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This report provides evidence of the influence of a tutorial “communication game” on fifth graders’
generative understanding of the integer number line. Students matched for classroom and pretest score
were randomly assigned to a tutorial (n = 19) and control group (n = 19). The tutorial group students
played a 13-problem game in which student and tutor each were required to mark the same position
on a number line but could not see one another’s activities. To resolve discrepant solutions, tutor and
student constructed agreements about number line principles and conventions to guide subsequent
placements. Pre-/posttest contrasts showed that (a) tutorial students gained more than controls and
(b) agreement use predicted gain. Analyses of micro-constructions during play revealed properties of
student learning trajectories.

The number line is a geometric interpretation of number, a representation of a straight line
measurable in linear unit intervals and constituted by a set of mathematical conventions. The
conventions include the use of tick marks to partition intervals and indicate points, the placement
of lesser to greater numbers from left to right, and the use of end arrows to indicate that numbers
continue indefinitely. Though in the elementary grades the number line is a grounding represen-
tation in curriculum on integers and fractions, the measurement principles that underlie number
line conventions are rarely the focus of mathematical inquiry (an exception is TERC’s Investiga-
tions, Economopoulos, Wittenberg, Schifter, Russell, Murray, & Bastable, 2008). Many students
leave elementary school with limited understandings of numerical and linear units (National
Council for Education Statistics (NCES), n.d.; NCES, 2009), ill prepared for foundational topics
in the secondary grades such as the interpretation of bar charts or graphing problems involving
the coordinate plane (two perpendicular number lines). This article reports an investigation of
a tutorial approach with fifth graders that provides one avenue to support students’ generative
understanding of number line principles for the representation of integers.

A premise for our study was that mathematical conventions emerge as people engage with
coordination problems—problems in which concerted action is necessary. This idea is at the
crux of treatments of convention from diverse perspectives, including epistemological (Lewis,
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434 SAXE ET AL.

1969), linguistic (Croft, 2000; Keller, 1994), and psychological (Clark, 1996; Saxe & Esmonde,
2005a; Sfard, 2008). In our study, we extend the treatment of conventions to a communication
game approach to tutoring number line principles and definitions. In our tutorial method, students
and tutors solved problems that required them to mark positions on number lines without visual
access to one another’s activity, and then compared their solutions and their reasoning. To resolve
discrepant solutions, tutor and student constructed agreements about number line principles and
conventions that guided subsequent placements for new problems. Examples of these principles
included order (e.g., numbers increase from left to right) and unit interval (e.g., distances between
consecutive numbers must be the same). The sequence of tutorial problems was designed to engage
the tutor and student in progressively more challenging ideas, requiring them to coordinate prior
agreements, explore the entailments of these agreements, and establish new ones. The overarching
goal of the study was to determine the effectiveness of the tutorial approach as well as the dynamic
processes that mediate student learning.

STUDENTS’ INTERPRETATIONS OF THE NUMBER LINE

Most students have been exposed to number lines in the course of instruction in elementary math-
ematics. But, as noted earlier, when assessed with numerical representations on the line, many stu-
dents show limited understandings of mathematical conventions and principles. Some researchers
have interpreted younger students’ representations of whole numbers as logarithmic—as numbers
increase they are closer together on the line (Booth & Siegler, 2008; Ramani & Siegler, 2008).
Other studies document students’ difficulties interpreting fractions on the number line (Saxe,
Shaughnessy, Shannon, Langer-Osuna, Chinn, & Gearhart, 2007) or irregular sequences of whole
numbers on the number line (Saxe, Shaughnessy, Gearhart, Haldar, Earnest, & Sitabkhan, 2009).

In one recent two-study investigation, Saxe et al. (2009) examined the character of students’
developing conceptual coordinations of numerical units (whole numbers on the line) and linear
units (concatenated congruent line segments constituting the line). The present study builds upon
this prior work, and therefore we summarize those findings here. In the first Saxe et al. study,
students were asked to order and position three integers on an unmarked (or “open”) number line.
In some tasks, the integers were consecutive (e.g., 0, 1, and 2; or 5, 6, and 7); in other tasks, the
three integers were non-consecutive, and some of the numerical distances were irregular (e.g., 9,
10, and 13; or 9, 12, and 13). Most students placed the integers in appropriate ascending order
from left to right, and most represented the numerical differences as linear unit distances for
the consecutive integer tasks correctly (e.g., 0, 1, 2). But many treated the irregular sequences
as if they were regular ones without coordinating numerical units (points represented by written
numerals) and geometric units (congruent line segments). For example, one pattern in students’
representations was equidistant placement of an irregular number sequence (e.g., 9, 10, 13), a
pattern that respected the ordinal properties of the numbers but not a coordination of numerical
units with linear units.

In the second Saxe et al. (2009) study, students were presented number lines with two points
labeled with whole numbers and were asked to position a third whole number. The numbers for
some tasks were consecutive, and the third number to be placed was the next consecutive number
in a sequence (0 and 1 labeled, place 2). But the number sequence used in the other tasks were
irregular (e.g., 9 and 11 labeled, place 12). As in the first study, students’ solutions were more
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SUPPORTING GENERATIVE THINKING 435

likely to be correct when students were locating successive numbers that differed by 1. But when
placing numbers in an irregular sequence, many students’ solutions were partial coordinations of
numerical units, linear units, and order. For example, given values such as 9 and 11 and asked to
place 12, students would often treat the 9→11 interval as a unit interval, placing the 12 where
the 13 should be.

FRAMEWORKS USED TO GUIDE THE DEVELOPMENT
OF OUR TUTORIAL INTERVENTION

A challenge for mathematics educators is to develop techniques to support students’ use of their
potentially generative but only partial knowledge to construct more integrated and coordinated
understandings (diSessa, 1988; diSessa & Roschelle, 1994; Lehrer, 2003; Piaget, 1973). To ad-
dress this challenge, we used two frameworks in the design of a tutorial approach. The first
framework is both curricular and pedagogical: The goal is to articulate core number line con-
ventions and principles as well as ways of supporting their construction in a tutorial. The second
framework is cognitive: The focus is on the conceptual processes entailed in students’ efforts
to build on their partial but generative ideas (like numerical order, length, cardinal number) to
construct the constitutive conventions of the line as a representation for numerical magnitudes.
Of course, these frameworks are related, and we coordinate them in our tutorial design as well as
in our analyses of student learning.

Curricular and Pedagogical Framework

In elementary mathematics instruction, linear models serve two general functions. One function
is a model for magnitudes external to the line, such as a thermometer as a model for temperature,
a bathroom scale as a model for weight, or a ruler as a model of linear distance. Such models
and their constitutive conventions afford the recording of physical phenomena in linear form,
calibrated in units that reflect physical magnitude. For example, in the case of scales for weight,
the record is calibrated in units that do not descend below zero, and upper bounds are defined in
relation to what is functional for the items measured (e.g., grams vs. kilograms). Once represented,
models for physical magnitudes can be the object of arithmetical transformations and support
meaning making, like additions of positive values of weight by moving a corresponding number
of weight units to the right on a number line. Children’s familiarity with physical magnitudes
(length, weight, number, elevation, temperature) can be helpful representational contexts that
support their intuitions about units and linear models (Ball, 1993; Lampert, 2001; Lehrer, 2003).

The second function of the number line is self-referential. The line can be used to reason about
numerical relations without reference to any magnitude in the world beyond the line itself. For
example, we can conceptualize the number 3 as defined by a point equidistant from 2 and 4, or 3
as the difference between 9 and 12, or 1 and 4, or 6 and 9, and so on. It is the self-referential use
of the line that carries with it a number of necessary consequences (entailments), like negative
number (the subtraction of a greater number from a lesser number), the symmetry of positive and
negative numbers in relation to 0, and the infinite extension of numbers to the right and the left
of the depicted number line.

Our premise is that engaging students in the construction of the constitutive conventions of the
line by resolving communicative breaches is a useful pedagogical strategy in which an exploration
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436 SAXE ET AL.

of the modeling function of the line can support the elaboration of the self-referential function.
In the initial phase of the tutorial, student and tutor solved modeling problems like marking the
length of four red Cuisenaire Rods on an open number line with only zero represented and no
other tick marks. A subsequent problem engaged student and tutor with modeling problems of
multi-unit intervals when, for example, they marked the distance of 6 reds using purple rods
(2 reds is the equivalent length of 1 purple). As students recorded rods of specified lengths, the
rods served the functional equivalent of units, and thus the measurement and modeling activities
supported students as they calibrated the line with tick marks.

As the tutorial progressed, the tasks engaged students with units defined on the line itself,
and the line was treated as a self-referential numerical object constituted by the communicative
agreements with no reference to rods at all. During the final phase of the tutorial, the tutor engaged
the student in reflections on the mathematical entailments of the constitutive conventions of the
number line, supporting the student’s use of prior agreements about order and unit to construct
further entailments like negative number and the symmetry of negative and positive integers
around zero.

Cognitive Framework

As students constructed number line representations in our tutorial sessions, their prior under-
standings of number and the geometry of the line regulated their efforts. To ground our develop-
mental analysis of students’ construction of representations, we adapted a framework from prior
research related to the microgenesis of representational activity (Saxe, 1991; Saxe & Esmonde,
2005a, 2005b; Saxe et al., 2009). Here, we apply that framework to the conceptual regulations
involved in the modeling functions and the self-referential functions of the number line.

Modeling Function. We argue that three interwoven strands of conceptual activity regulate
efforts to model a physical magnitude on a number line over microgenetic time (Saxe, 2004).
To illustrate these, we consider a problem in which student and tutor are required to represent
a distance of four Cuisenaire Rods on a number line with only 0 marked, as depicted in the
problem conditions row in Figure 1. Accomplishing this task requires (1) quantifying the rods,
(2) quantifying the line, and (3) coordinating the two processes of quantification to produce a
specific numerical representation.

1. Quantifying rods. The rods presented in the problem conditions, like any physical ob-
jects, are not inherently magnitudes or units of length. They must be quantified in conceptualizing
activity, each rod treated as a segment of length that can be joined to another. In Figure 1, the
length is four red rods. Such quantifications were investigated by Piaget and colleagues in their
treatment of geometry (Piaget, Inhelder, & Szeminska, 1960), and their findings revealed concep-
tual coordinations involved in the geometric translations of lengths and the additive compositions
of lengths.

2. Quantifying the line. Like the rods, the line presented in the problem conditions is not
inherently a numerical representation. There is no inherent directionality to a line (magnitudes
increase from the left to the right), and tick marks on the line have no intrinsic numerical meaning.
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SUPPORTING GENERATIVE THINKING 437

FIGURE 1 Three strands of conceptual activity regulating the construction of the line as a record of four red rods.

A line becomes a means of recording a linear representation of rods—like a distance of four red
rods—when it is treated conceptually, as divisible into linear units that begin at an origin (zero).

3. Rod-line coordination. Even if (a) rods are treated as segments that together constitute
a length and (b) the line is conceptualized as having an origin and as being divisible, these
two conditions in themselves are insufficient to generate a number line representation. These
two strands of conceptual activity must be coordinated, informing one another as the activity
takes shape. In this generative process, conceptualizing the rods, the line, and their coordination
must bootstrap one another (represented by the double arrows across the three activity strands).
The rods, for example, must be conceptualized as a concatenated or iterated sequence of four
segments that can be put in alignment with a line. Similarly, the line must be treated as a vehicle
to accumulate linear concatenated segments or iterations that begin at the origin 0 and proceed to
the right.

Self-Referential Function. Three strands of conceptualizing activity also constitute the
self-referential use of the line. In contrast to modeling, however, linear units do not originate via
correspondences with rods external to the line. Instead the strands of conceptualization shift to
internal relations on the line. Consider Figure 2 that shows, under the initial problem conditions,
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438 SAXE ET AL.

FIGURE 2 Three strands of conceptual activity regulating the use of the line as a self-referential representation for the
task, “Mark where 4 goes on the number line.”

a line with only 0 and 1 marked, labeled with tick marks; the task is to mark the number 4 on the
line. The three interwoven strands of conceptual activity are: (1) a treatment of numerical units
as additive such that numbers can be composed and decomposed, (2) a treatment of the line as
susceptible to subdivision or concatenation using congruent segments, and (3) the coordination
of numerical and linear units in the creation of a length of four units that draws upon the first and
second strands as resources (double arrows across the three activity strands).

TUTORIAL DESIGN

To support an understanding of the number line as constituted by mathematical principles and con-
ventions, we drew on the two frameworks to devise the problem-based communication game. In
the game, all problems required student and tutor to coordinate their activity such that they placed
points on identical number lines, but the activity of each was occluded from the other (although
unbeknownst to the student, the tutor had a view of the student’s activity—see Figure 3). To repair
and avoid making discrepant placements, the tutor supported the construction of agreements (see
Figure 4) like order (numbers become greater left to right) and unit interval (the distance between
consecutive counting numbers must be the same). Over the course of the tutorial, student and
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FIGURE 3 The communication game.

tutor solved 13 problem sets. Earlier problems involved exploring a linear magnitude—rods of
different lengths coded by color (Cuisenaire Rods). Later problems involved the use of the line
as a self-referential object. For each problem set, we developed three parallel forms so that, if a
student and tutor had discrepant placements on one iteration, the tutor used the next parallel form.
Our working hypothesis was that a student’s mindful use of the agreements would lead to greater
success at coordinated action; further, that the use of such mindful coordinations throughout our
problem sequence would support a generative understanding of the entailments of the number
line, like negative number, absolute value, and the line’s symmetry.

Students participated in two sessions (on different days), with a set of wrap-up problems
terminating each session. In each wrap-up, four non-routine number lines (e.g., with tick marks
unevenly spaced, with numbers decreasing from left to right) were presented, and students were
asked to evaluate whether each number line was “correct.” In these wrap-up sessions, the tutor
noted whether the students made spontaneous use of the agreements in appropriate ways to
evaluate the adequacy of each line. If the student did not make use of agreements in appropriate
ways, the tutor prompted the student with an appropriate use of the agreements. An expectation
was that students’ conscious and spontaneous use of appropriate agreements to mediate their
evaluation of lines would be an important factor in supporting their learning during the tutorial.

By the end of the two tutorial sessions, students and tutors participated in all problem sets,
though the number of iterations of each type varied across students. Over these two sessions,
students and tutors generated five agreements (see Figure 4) and these were recorded on an
Agreement Sheet. The first four agreements—Order, Unit, Multi-unit, and Every Number has a
Place—were constructed during problems that involved the modeling function of the line with the
rods. These agreements were then drawn upon again with the line alone as the tutorial proceeded,
and the fifth agreement—Symmetry & Absolute Value—was constructed when negative numbers
were generated on the line in the final phase of the tutorial.
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440 SAXE ET AL.

FIGURE 4 Agreements generated between players to improve coordination of point placements.

The game had some affinities to previous methods referred to as teaching situations (Davydov
& Tsvetkovich, 1991) and teaching experiments (Steffe, 2001; Tzur, 1999) as well as Vygotsky’s
method of double stimulation (Vygotsky, 1986). But unlike teaching situations and teaching ex-
periments in which the focus is on students’ construction of knowledge through tutorial situations
and prompts, the purpose of the communication game was to follow the constructive process as
student and tutor negotiated successful communications.

STUDY DESIGN

To determine the efficacy of the communication game on students’ use and understanding of
number line principles, we conducted an experimental study, randomly assigning matched fifth
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SUPPORTING GENERATIVE THINKING 441

graders to tutorial and control conditions. We administered assessments related to number lines
and integers to both groups. Our study addressed the following questions: (1) Was the commu-
nication game effective in supporting learning as determined by pre- to post-assessment gain of
players as contrasted with controls? (2) Did variability in mindful agreement use during the tutorial
predict learning gains? (3) What was the character of players’ constructions and understandings
as students moved from the recording/modeling function of the line to the self-referential function
of the line?

METHODS

Participants

Ninety-five students in 6 fifth grade classrooms were administered a number line mathematics
assessment consisting of 17 items (described below). Student performance on the assessment
was used as a criterion to select a lower performing sample of students for participation in the
study. The mean score for the total population of 95 students was 10.7 items correct (SD = 3.3).
Forty students with scores at the lower half of the distribution (4 through 11 items correct) were
matched in pairs based on number correct and then randomly assigned to a tutorial group (n =
19) and control group (n = 19).

Materials

Number Line Assessment. A 17-item assessment (Appendix) was used to evaluate stu-
dents’ knowledge of number line related properties and ideas: order, positive and negative integers,
linear unit, absolute value and zero, and symmetry. Most of the items were based on interview
tasks used in prior work to investigate student thinking about integers on the number line (Saxe
et al., 2009).

Tutorial Materials. The following materials were used. (1) Two colors of pairings of Cuise-
naire Rods, each with a 2:1 length relation: Red (length = 2 cm) and purple (length = 4 cm);
light green (length = 3 cm) and dark green (length = 6 cm); (2) 13 sets of problem cards with
3 parallel forms in each set (39 problem cards in all); (3) a pre-printed number line for each of
the 39 problems—the students’ number lines were printed on paper, and the tutor’s number lines
were printed on transparencies; (4) wrap-up problems (four for each session) printed on sheets,
four tasks per sheet. Additional materials included (5) a blank piece of paper (on which the tutor
wrote number line agreements created in discussion with the student), (6) two markers (one for
tutor and one for student), and (7) a removable screen.

Procedures

Pre- and Post-Assessments. The number line pre-assessment was administered to each
participating classroom. The post-assessment was administered within several days following
students’ participation in the tutorial (tutorial group) or a similar duration of time (for the control
group).
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442 SAXE ET AL.

FIGURE 5 Multi-phase procedure used with each communication game problem.

Tutorial Overview. Each of the two tutorial sessions lasted about 45 minutes and was
videotaped. For each session, a standard procedure was used as tutor and student engaged with
successive problems. The multi-phased procedure is depicted in Figure 5a–d.

In the problem card phase (Figure 5a) the tutor presented the student with a card from the
card deck, a number line keyed to the problem, and rods if required by the problem. In the
screen down phase (Figure 5b), the occluding screen was positioned at a slight oblique angle
so that the tutor could surreptitiously peer over the screen to see the child’s workspace. In the
number line construction phase, the student and tutor constructed number lines to address the
problem card (Figure 5c). In the screen up, positions match? phase, the screen was removed
once the constructions were completed (Figure 5d), and the tutor asked the student to overlay the
two number lines, compare point placements, and explain his/her solution. During play, a video
camera was positioned to record the child’s activity and interactions with the tutor.
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SUPPORTING GENERATIVE THINKING 443

FIGURE 6 Sequencing of problem sets, iterations, and wrap-up items in the two tutorial sessions.

As shown in Figure 6, students had three opportunities (three iterations of a problem type) to
achieve coordinated point placement. The tutor proceeded differently as a function of whether or
not the tutor and students successfully matched point placements.

When the points did not match, the tutor supported joint reflection on sources of the discrepancy
and ways of coordinating action on subsequent problems by following several heuristics, as
appropriate:
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444 SAXE ET AL.

1. Refer back to agreements. The tutor asked the student if he/she considered any of the
agreements when placing the point and, if so, how. Then, drawing on the prior agreements
to justify the placement, the tutor explained the placement of his/her own point (e.g., “I
did mine this way because our agreements say . . . ”).

2. Refer back to problem. Sometimes a student’s inappropriate construction could be inter-
preted as responding to a problem that was different from the one printed on the card. In
such cases, the tutor oriented the child to the problem card stating, “I did mine this way
because the card said to find . . . .”

3. Anticipate the next problem. After drawing on the agreements or referring to the problem
card, the tutor asked the student what each could do differently on the next problem card
to try to place points at the same location.

If players reached the third iteration of a problem type and continued to have discrepant point
placements, the tutor moved on to the next problem set. The student was unaware of the distinction
between types of problems.

Figure 6 also depicts the procedure when the point placements matched. When the point
placements matched, the tutor presented the student with a card from the problem deck that was
the next problem type in the tutorial sequence. Thus the tutor navigated through the different
problem versions, drawing cards of the same problem type or the next problem type depending
on the dyad’s (student’s) success in achieving coordinate placements.

Tutorial Problem Sets. The 13 problem sets used over the two tutorial sessions are depicted
in Figure 7. In our design of Session 1 problems (Problem Sets I through VIII), we were guided
by three principles. The first was that earlier problems in the sequence (e.g., Problem Sets III and
IV) should treat the line as a recording device in which units were not defined as a distance on
the line but by the rods themselves (an “open line” with only one point labeled—as represented
in Figure 1). In the later problem sets, the line should be a self-referential object in which the unit
is defined by two labeled points (as represented in Figure 2 and exemplified in Problem Sets VII
and VIII). The middle problems should serve a transitional function (Problem Sets V and VI).

The second principle was that problems should motivate agreements between tutor and stu-
dent. The introductory problem sets were designed to provoke the Order and the Unit Distance
agreements; Problem Sets III/IV were designed to provoke the Skip Counting agreement; Prob-
lem Sets V/VI were designed to provoke the Every Number has a Place agreement; and Problem
Sets VII/VIII were designed to support the prior agreements to the treatment of the line as an
autonomous, self-referential object.

The third principle that organized our design of Problem Sets III through VIII was that each
problem set should be represented twice, with a less complex form immediately preceding a
more complex form. For example, Problem Sets III and IV, in which the line was used to record
Cuisenaire Rods, involved a translation from a problem in which students needed to represent
unit Cuisenaire Rods in terms of multi-unit rods on the line (Problem Set III), to Problem Set
IV, which involved a similar translation, but with the added complexity of coordinating unit and
multi-unit rods. (See Figure 7 for more detail.)

In Session 2, the five problem sets included negative numbers, absolute value and symmetry
(Problem Sets IX–XIII). For all problems in these problem sets, at least two points were labeled,
and thus the line afforded the use of a self-referential representation.
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FIGURE 7 Problem focus, problem number, and problem conditions (problem statement, rods used, and line used).

In our design of both Sessions 1 and 2, we ended with a wrap up phase. The tutor engaged the
student with four wrap-up problems in each session to support agreement usage. In addition, at
the beginning of the second session, the tutor and student reviewed the written agreements from
the first session.

We present brief summaries of the 13 problem sets below—more complete descriptions are
contained in Figure 7.
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446 SAXE ET AL.

a. Problem Sets I and II—Introductory problems: The Order Agreement and the
Same Distance Agreement. For the first two problem sets, the tutor purposely constructed a
solution different from the student’s. Uncoordinated solutions motivated the need for the first two
agreements: Order (Problem Set I) and Counting Numbers–Same Distance (Problem Set II). For
example, in Problem I.1, student and tutor were required to mark a point on their number lines,
and the tutor ordered numbers on the line in the opposite direction from the student’s order. The
resulting discrepancy led to the need to negotiate an order agreement, typically an agreement that
built on the student’s understanding of the left to right order for increasing value of numbers. In
problem II.2, the tutor intentionally used different colored rods than the student as a context to
motivate the use of a common unit and the “Counting Numbers–Same Distance agreement.” (Note
that only on Problem Sets I and II did the tutor purposely place points in incorrect locations.)

b. Problem Sets III and IV: The Skip Counting Agreement and problems involving unit
and multi-unit relations. The purpose of Problem Sets III and IV was to coordinate multi-unit
to unit relations with rod lengths and record these coordinations on an unpartitioned line. For
example, Problem III.1 required use of the 2:1 rod relations between purple and red; the directions
stated, “Mark where 6 reds is using the purple rods,” and the number line provided was marked
only with zero. Problem IV.1 also required coordinated use of unit and multi-unit rods, though
the rods shifted in lengths to light greens and dark greens.1

c. Problem Sets V–VIII: The Every Number Has a Place Agreement and moving from
rod lengths on the line to internal relations between points on the line. The purpose of
these problems was to support a transition from the line used as a means of recording the length
of rods (Problem Sets III and IV) to the line as a self-referential object. Thus Problem Sets V
and VI required the construction of rod lengths on the line, where the line was partitioned into
unit and multi-unit intervals with a single non-zero point labeled. Problem Sets VII and VIII
contained lines with two points labeled and thus did not make use of rods.

d. Problem Sets IX–XIII, The Absolute Value Agreement and negative numbers. The
purpose of Problem Sets IX to XIII was to introduce negative numbers and explore ideas of
absolute value and symmetry of numbers to the right and left of zero on the number line.
Successful execution of these problem required players to extend existing agreements to numbers
to the left of zero.

Wrap-Ups. Each of the two sets of wrap-up problems was linked to the mathematical content
of the respective session. The wrap-up problems consisted of non-routine number lines printed on
paper with boxes for the student to indicate whether the number line was “correct” or “incorrect”

1For problems that required use of Cuisenaire Rods (Problem Sets II–VI), we altered the colors (and hence the lengths)
of the rods across problem sets. For Problem II the rods were of only one color, and the particular color choice emerged
out of a cooperative agreement by the student and tutor. Problem Sets III and V required a red-purple pairing, and Problem
Sets IV and VI required a light green-dark green pairing. For each rod pair, there was a 2:1 ratio in lengths between rod
color (i.e., 2 reds = 1 purple; 2 light greens = 1 dark green). In Problem Sets VII and VIII, no rods were used.
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FIGURE 8 Agreements targeted for each wrap-up problem.

and to use the agreements to justify their answer orally. If students answered accurately and used
a relevant agreement to justify the answer, the tutor moved on to the next wrap-up problem.
If the student responded correctly and did not provide the relevant agreement to support it, the
tutor asked explicitly about the relevant agreement. The complete set of number lines used in the
wrap-up problems is contained in Figure 8 along with the targeted agreements.

RESULTS

The results are presented in four sections each linked to an organizing research question as
depicted in Table 1. Across sections, our focus is on a convergent analysis of whether and how
students’ participation in the tutorial supported learning gains, although we draw on different
data sources and use different kinds of analytic techniques in each section. First, we analyze the
efficacy of the tutorial, contrasting learning gains of the tutorial and control groups. Second, we
analyze whether tutorial students’ use of agreements predicted learning gains. Third, to probe the
character of learning in the tutorial, we analyze tutorial students’ shifting conceptual coordinations
as they worked through a sample of tutorial problems. Finally, we conclude with an analysis of a
single student’s progress through Session 1 problems to provide further insight into the dynamics
of learning in the tutorial. We analyze his interaction with the tutor as agreements were made,
discrepant placements were considered, and coordinated placements were accomplished.
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Effects of the Tutorial: Pre- to Posttest Gains for Tutorial and Control Groups

To determine whether the tutorial game supported students’ understanding of number line prin-
ciples, we contrasted pre- and posttest scores of tutorial and non-tutorial groups. The group
contrast served two purposes. First, the contrast provided a control for regression to the mean, a
potential threat to validity; recall that students in the groups were the lower achieving students
in their fifth-grade classrooms, and thus gains from pre- to posttest for the tutorial group could
be an artifact of sampling, not an unbiased estimate of learning. Second, the random assignment
of students to the tutorial and no-tutorial groups served to control for possible practice effects
and classroom experiences that may have positively (or negatively) influenced game players’
performance.

Figure 9 contains box plots that contrast the pretest and posttest performances of the tutorial
game and no game groups. At pretest, groups showed a similar distribution of scores as expected,
since pairs were matched on pretest and then randomly assigned to tutorial and control groups
within classrooms. Mean scores at pretest were 7.95 (SD = 1.54) and 8.36 (SD = 1.95) for
the tutorial and control groups, respectively. The amount of gain differed for the groups. For
the tutorial group, the gain was 4.1 points (SD = 2.26) whereas for the control the mean gain
was 1.4 points (SD = 3.32). For the tutorial group, the gain represented a shift of 1.82 standard
deviations. A 2 × 2 ANOVA revealed an interaction between group and pre- to post-assessments
(F (1,36) = 8.83 (p < .005), and follow-up analyses revealed a significant difference between
pre- and posttest performance (t(18) = 7.92, p < .0001), but no difference between pre- and
posttest for the control. Thus the tutorial group showed a significant gain, the gain was not due to
a regression to the mean, and the effect size for the gain was large.

FIGURE 9 Box plots of pre- and posttest scores for tutorial and control groups.
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450 SAXE ET AL.

A few students showed little or no improvement from pretest to posttest. Figure 9 depicts these
students as outliers on posttest in the tutorial group: Student #1 and Student #3 received posttest
scores of 7 points and 8 points respectively. Inspection of the tutorial records of these students
suggests an explanation for their little or no improvement. In Session 1 of the tutorial, Student
#1 achieved a pass score for each of the problems, effectively eliminating the student from the
process of working through agreements with the tutor. Student #3, in contrast, did not achieve
pass scores on most of the problem iterations and hence had a great deal of exposure to the game,
but very limited appropriate use of the agreements. The student who was the less extreme bottom
outlier in Figure 9 (Student #7) scored 9 on the posttest, gaining 3 points from pre- to posttest
performance.

Mindful Use of Agreements and Learning Gains

The purpose of this analysis is to help explain the processes and practices that supported learning
as revealed in the prior section. We expected that over the course of the two tutorial sessions,
students would vary in whether they incorporated mindful use of the agreements in reasoning
about number lines. Further, we expected that developing active use of agreements would support
(and hence predict) learning gains. To produce an index of agreement use, we focused on the
wrap-up sessions. For each wrap-up, students evaluated the adequacy of four lines keyed to
the respective session’s problems. For each line, we coded and analyzed (1) the correctness of
students’ judgment, (2) the extent of spontaneous appropriate and inappropriate agreement use,
and (3) the relation between appropriate and inappropriate agreement usage and learning gains.2

Students’ Judgments About Adequacy of Number Lines. Figure 10 and Figure 11 show
the distribution of students’ initial correct judgments by wrap-up problem for Sessions 1 and 2,
respectively.3 Student performances on the wrap-up problems varied by problem. Students had
more difficulty with (a) problems involving the use of negative number and (b) problems that
involved the coordination of order and unit distance agreements.

Spontaneous appropriate and inappropriate agreement use. After the student pro-
vided an initial judgment about whether a wrap-up number line was correct, the tutor asked for a
justification. We coded the agreements that students referenced in their justifications and whether
students used these agreements appropriately or inappropriately. Appropriate agreement use was
coded when students spontaneously applied an agreement correctly, drawing on an agreement
to argue appropriately that an adequate number line was correct or that an inadequate number
line was incorrect. To illustrate, on Session 1, Problem 2, students were presented with a number
line that included three numbers, 2, 4, and 5, with the distance between 2 and 4 twice that of the
distance between 4 and 5. One student who received the appropriate agreement use code stated

2After the student’s spontaneous evaluation of each line, if agreements were not used at all or used inappropriately,
the tutor engaged the student with an evaluation of the line in relation to the previously established agreements. The
procedure ensured that the evaluation was achieved using agreements appropriately by the conclusion of the session.

3One student did not respond on problem 1.
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FIGURE 10 Percent of students producing correct initial evaluations of number lines by problem in Session 1.

that the number line was correct and justified her answer by referring to the agreement that states
that every number has a place, but does not necessarily need to be shown. The student placed
her finger where 3 would be and indicated that if 3 were present, the numbers would be equally
spaced. To clarify further, she wrote in the 3 halfway between the 2 and 4 and again said “they’re
the same distance,” referring to the unit distance agreement (counting numbers-same distance).
In this case, the student successfully coordinated two agreements appropriately. Inappropriate
agreement use was coded when students applied an agreement incorrectly to the number line,
drawing on an agreement inappropriately to support a judgment that an adequate number line
was incorrect or that an inadequate number line was correct. To illustrate, again consider Session
1, Problem 2. One student stated that the number line was incorrect. He justified his answer with
an inappropriate use of the unit distance agreement (counting numbers-same distance), arguing
that the 2 and 4 are further apart than the 4 and 5.

Two coders rated inappropriate and appropriate agreement usage during wrap-up sessions
for four students initially. Inter-rater reliability was 94%. Coders then proceeded to code inde-
pendently. To evaluate coder drift, midway through the coding process an additional student’s
wrap-up responses were coded by both raters, and reliability was 100%.

FIGURE 11 Percent of students producing correct initial evaluations of number lines by problem in Session 2.
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Relation between agreement use and learning gains. The purpose of our analysis was to
determine whether mindful use of agreements predicted learning gains. We used the frequencies of
appropriate and inappropriate student agreement use over the course of the wrap-ups as estimates
of the character of agreement use over the tutorial sessions. For the measure of appropriate
agreements, we used total appropriate agreements on the more difficult target problems, since
it was these problems that produced considerable variation in appropriate agreement use. These
problems spanned varied kinds of principle violations, including order for negative number
(Session 2, Problem 1) and equal distances for numerical unit (Session 2, Problem 3), or the
problem design suggested a principle violation where there was none (Session 1, Problem 2;
Session 2, Problem 4). For inappropriate agreement use, we used all of the problems in the
computation of the measure, because inappropriate agreement use on these easier problems
provided information on students’ mindful use of agreements and contributed to variation in
students’ inappropriate agreement scores. To determine whether agreement use predicted learning
gains, we correlated the two measures of agreement use (appropriate and inappropriate) with
gains, controlling for pretest performance. The analyses revealed moderately strong correlations.
Students who used agreements more appropriately in the wrap-up sessions were more likely to
have higher gain scores (r (N = 19) = .56, p = .008), and students who used agreements more
inappropriately were likely to have lower gain scores (r (N = 19) = –.67, p = .001).

Learning Trajectories Through the Tutorial

To analyze the process of student learning in the tutorial, we focused on Session 1 as these
problems set the foundational agreements used throughout the tutorial. The purpose was to
document the character of the coordinations students produced on each problem type, from the use
of the line as a recording device as they translated unit rods into multi-unit lengths on open number
lines with only one point labeled (Problem Sets III and IV), to open number line problems with the
line constrained by additional tick marks (Problem Sets V and VI), to problems with two points
labeled that focused on the line as an autonomous representation (Problem Sets VII and VIII).

Problem Sets III and IV: Unit to Multi-Unit Relations Quantified in Rods. For the
iterations used in Problem Sets III and IV, the student and tutor were required to produce a unit-
to-multi-unit translation of the rods on the number line. In Problem III.1, for example, tutor and
student were required to represent a distance of 6 reds with purples on a line with only 0 marked.
Recall that if the tutor judged the student’s performance to be not passing, the tutor drew the next
problem card that was the same problem type (e.g., III.1→III.2); if judged as passing, the tutor
drew the card for the next problem type (e.g., III.1→IV.1). As always, the student was unaware
that a judgment was being made or that the next problem card was contingent on a judgment.

The performances judged to be “passing” required the coordination of three strands of con-
ceptual activity sketched in the introductory section (see Figure 1)—(a) quantification of the
rods, (b) quantification of the line, and (c) their coordination in the construction of the endpoint
of a rod-length on the line with 0. The quantification of the rods involved a translation of unit
lengths into multi-unit lengths, as when a problem card required a length of 6 reds using only the
purples (6 red rods is equivalent to 3 purple rods). The quantification of the line required treating
the line as having a start point from the zero tick mark and a translation of a unit distance (or
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SUPPORTING GENERATIVE THINKING 453

multi-unit distance) proceeding from left to right. The coordination of these two strands required
the construction of a specified length, like a length of 6 reds with 3 purples starting from zero
and proceeding to the right on the line.

To document the way students successfully coordinated their quantification of the rods and
the line in relation to one another, we coded four types of passing coordinations that varied in
sophistication. Figure 12 illustrates these four variations for Problem Set III; it also shows the
proportion of students who used these coordination types for their final (passing) iteration for
Problem Sets III and IV, respectively. The ns reflect the number of students who passed at any of
the three iterations of each problem type.

FIGURE 12 Proportion of students using each of four coordination types for their final (passing) iteration of Problem
Sets III and IV.
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Students’ passing approaches reveal the way they generated hybrid representations of the
rods and the line together to create a linear distance in rod units in order to identify a point.
We observed ways in which the constraints of the line and the rods became interwoven in the
process of students’ constructions and in their representations. When students used a strategy that
anticipated the need to coordinate units and multi-units with the rods to produce a representation
on the line (see Figure 12a), students first established a 2:1 correspondence between reds and
purples off the line with the rods alone, perhaps anticipating the linear relation “required” by the
line. They then used the correspondence to construct the length of 6 reds using three purples,
aligning the end of the first with 0 (extended to the right), and marking the number 6 at the end
of the third purple. Other coordinations involved establishing the 2:1 correspondence on the line
itself; as shown in Figure 12b and Figure 12c, both unit rods were used with the multi-unit rods
to establish appropriate linear distances beginning at the zero point and extending to the right.
In some cases, students used the unit rods only to establish the correspondence (Figure 12b),
and in other cases, students used the unit rods exhaustively (Figure 12c). Figure 12d shows a
coordination in which the multi-unit rod was used as only an afterthought; students constructed
the target length using the unit rods (reds), marked the location of the target distance, and added
the multi-unit rods (purples).

To understand whether the tutorial supported student learning, we coded the iteration at which
students passed: first, second, third, or not passing any iteration. Figure 13 displays the percent of
students who achieved passing performances on successive iterations of Problems Sets III and IV,
respectively. The figure shows evidence of learning over problem iterations in two ways: (1) On
the first iterations of Problem Sets III and IV, only a minority of students produced an adequate
performance, but by the third iteration of each problem type, the large majority of students
passed—89% and 95% for Problem Sets III and IV, respectively; (2) A greater percentage of
students achieved passing performances for the first problem of Problem Set IV as compared to
Problem Set III, even though Problem Set IV was designed to be more difficult as it involved the
use of unit/multi-unit combination on the line. The finding suggests that the learning that occurred
on Problem Set III was useful to students as they engaged with the more complex problems in
Problem Set IV.

FIGURE 13 Accumulating percentages of students passing over iterations of Problem Sets III and IV.
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SUPPORTING GENERATIVE THINKING 455

FIGURE 14 Proportion of three non-passing coordination types used for iterations of Problem Sets III and IV. Unlike
passing performances in which each student was represented at most once in an analysis (e.g., Figure 13 for Problem Sets
III/IV), for non-passing performances, a student may have been represented not at all (passing on the first iteration), once
(passing on the second iteration), twice (passing on the third iteration) or three times (not passing any iteration). As a
result, we computed passing and non-passing performances differently (compare, for example, Figure 13 and Figure 14).
For the analysis of non-passing performances, we computed the proportion of times a particular type of non-passing
solution occurred using “type” as the unit of analysis rather than student. For Problem Set III, there were 21 no pass
performances involving 13 of the 19 students (6 passed on the first iteration), and for Problem Set IV, there were 12 no
pass performances involving 9 of the 19 students. For the analysis of passing performances, we simply computed percent
of students who made use of a particular type of passing performance, since students could not pass any problem type
more than once.

An analysis of the performance of students who received a No Pass revealed ways in which
unit-to-multi-unit correspondences and their coordination with the line posed difficulties; students
were producing hybrid representations constituted by the constraints of both the rods and the line.
Figure 14 contains illustrations of No Pass constructions for Problem Set III. Some students
determined the target length of rods with multi-units, the goal of the task, but then translated the
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rods into inappropriate units on the line (Figure 14a), as when the student marked a distance of
6 reds on the line with 3 purples, but labeled the endpoint of the rightmost purple with a “3”
rather than a “6.” Other students generated a unit-to-multi-unit correspondence on the line, but
confused multi-units and units (Figure 14b), thus creating a distance of six purples rather than
six reds. Other students inverted the relation of unit to multi-unit (Figure 14c), as when a student
treated two purple rods as equivalent to one red rod (or two dark greens as equivalent to one light
green). Still others provided no evidence of coordinating units and multi-units (Figure 14d and
Figure 14e). A remainder of cases involved idiosyncratic methods of using rods in non-normative
ways.

Problem Sets V and VI: Unit and Multi-Unit Relations Quantified in Rods and Line.
Problem Sets V and VI were designed to be a transition in the function of the line from a recording
device for rod distances to the line as a self-referential object in which the distance between 0
and 1 (or its equivalent) defined a linear unit. To support the transition, we added tick marks at
irregular intervals and labeled points other than the origin, 0. The positioning of the tick marks
corresponded to unit and multi-unit rod lengths. Thus Problem Sets V and VI presented students
with the conceptual challenge of coordinating units and multi-units on the line (the irregularly
spaced tick marks) in addition to the unit-multi-unit relations between the rods. We coded three
types of passing coordinations, illustrated in Figure 15 for Problem Sets V and VI. The n in
Figure 15 reflects the combined number of students who passed, whether at the first, second, or
third iteration.

We coded the most common kinds of coordination to document the way students quantified
the rods and the line on Problem Sets V and VI. Figure 15 displays the proportion of students
using each type of coordination documented. In the most common kind of coordination, students
quantified the complete target length (e.g., 5 reds) using the rods, coordinating their use of the
unit and multi-unit rods with the line (Figure 15a). This strategy is similar to those passing
coordinations documented on Problem Set III and IV (Figure 12), but, in addition, students
(a) created the unlabeled zero-point on the line to begin their concatenation and (b) partitioned
the line’s multi-unit interval into two units based upon the unit rod’s length.

The coordination illustrated in Figure 15b is an iterative approach to creating the hybrid
representation. Students used a unit rod length to represent linear distance on the line, translating
the rod through successive iterations. Sometimes they began with the unmarked zero and other
times with the point marked 1 to partition the multiunit interval to locate 5. In either case, they used
the unit rod to further partition the line’s multi-unit interval. Figure 15c illustrates a coordination
that evolved over time in the construction of a hybrid—a back and forth between the line and
the rods. The locus of the quantification vacillated between rod lengths and the construction of
units on the line, with activity with one form (line or rods) having implication for the other. In
Figure 15c the illustration shows a student who first constructed the target length of 5 reds by
placing the rods on the line (Figure 15c, Step 1). To represent the length on the line, the student
unwittingly construed a multi-unit on the line as a unit based upon the inscribed tick marks
(Figure 15c, Step 2); the resulting endpoint “4” conflicted with the initial rod construction of 5
unit lengths. The student subsequently revisited this conflicting information by crossing out the
“4” and recording a “5” as the endpoint on the line (Figure 15c, Step 3), and then reevaluated the
coordination of other numerals with the linear rod construction. The student crossed out the “3,”
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SUPPORTING GENERATIVE THINKING 457

FIGURE 15 Proportion of students using each of three coordination types for their final (passing) iteration of Problem
Sets V and VI. Of the 19 students who were administered Problem Set V, 16 students passed on one of the iterations.
Of the 16 students who were administered Problem Set IV, 15 students passed on of the iterations; 3 students were not
administered Problem Set VI due to time constraints.

which conflated the count of rods with linear units, and recorded a “3” and a “4” that reflected a
coordination between rods and the line (Figure 15c, Step 4). In the last step (Figure 15c, Step 5),
the student repositioned the rods to reflect the unit-multi-unit coordination between tick marks
on the line and linear units.
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458 SAXE ET AL.

FIGURE 16 Accumulating percentages of students passing over iterations of Problem Sets V and VI. Due to time
constraints, not all students received each task. One student was not administered the third iteration of Problem Set V,
and three students were not administered Problem Set VI.

To understand students’ trajectories of passing performances (and difficulties with the prob-
lems) through the iterations of Problem Sets V and VI, we calculated the percentage of students
who achieved passing performances on successive iterations of each problem type. Figure 16
reveals that students had greater difficulty achieving passing performances with the first two
problems in Problem Set V than the first two for Problem Set VI. Indeed, for Problem Set VI,
a majority of students passed on the first iteration, and only two failed to pass on the second
iteration.

We interpret students’ difficulties with Problem Set V as resulting from the coordination
problems posed by the introduction of line constraints, including unequal partitioning between
tick marks and the absence of a label for 0. (This interpretation is supported by the relative
success that students showed with the prior Problem Set IV, where pass rates were considerably
stronger on the first and second iterations, 50% and an additional 33%, respectively.) Despite the
decrement in performance on the first iteration of Problem Set V, the tutorial provided effective
support; similar to the trend for Problem Sets III and IV, by the third iteration of Problem Set
V, the majority of students passed the problem set, 88% and 94% for Problem Sets V and VI
respectively.

The performances of students who received a No Pass revealed the challenges of coordinating
quantification of rod length with quantification of the line. Figure 17 illustrates non-passing partial
coordinations for Problem Sets V and VI. In the No Pass coordinations, some students constructed
an accurate rod length but did not align this construction with the origin on the line (depicted
in Figure 17a, Step 1); in such cases, students sometimes removed the rods after marking the
endpoint (Figure 17a, Step 2). Other students treated rods as countable objects independent of
unit or multi-unit length, matching a count of five rods4 with the two interval sizes provided on
the line (Figure 17b). One student did not use rods at all, counting the tick marks starting with

4In some cases, students failed to construct the target length in rods, instead using a truncated length to correspond
rods with each of the two interval sizes on the line; students then inscribed numerals that treated each tick mark as a count
irrespective of interval size.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
C
a
l
i
f
o
r
n
i
a
,
 
B
e
r
k
e
l
e
y
]
 
A
t
:
 
1
9
:
5
7
 
1
7
 
N
o
v
e
m
b
e
r
 
2
0
1
0



SUPPORTING GENERATIVE THINKING 459

FIGURE 17 Proportion of four non-passing coordination types used for iterations of Problem Sets V and VI. We
used coordination type rather than student as the unit of analysis for non-passing coordination analyses (see Figure 14
caption for the rationale). For Problem Set V, there were 22 cases involving 13 of the 19 students. For Problem Set VI,
there were 12 cases involving 6 of the 16 students; three students were not administered Problem Set VI due to time
constraints.

1 up to 5 (Figure 17c), and two other students provided idiosyncratic interpretations of the task
(“other” in Figure 17d).

Problem VII and VIII: Unit-to-Multi-Unit Relationship Quantified on Line Only. Problem
Sets VII and VIII marked the transition to the use of a number line in which the units were defined
internal to the line itself, with no extrinsic links to Cuisenaire Rods. For these problems, the unit
distance was defined by the 0 to 1 interval (Problem Set VII) or its equivalent (Problem Set VIII).
The passing coordinations revealed ways that students used the unit or multiunit defined on the line
as a resource to identify the target point. We observed two distinct types of coordinations depicted
in Figure 18 and illustrated for problem VII.1. In the first type, students used an improvised tool,
such as pinched fingers or a pen cap, to measure the distance between 0 and 1, and then iterated
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460 SAXE ET AL.

FIGURE 18 Proportion of students using each of two coordination types for their final (passing) iteration of Problem
Sets VII and VIII. For passing coordinations, the n reflects students who passed at any of the three iterations for each
problem set, respectively. For Problem Set VII, this included 14 of 15 students (4 students were not administered the
problem set due to time constraints). For Problem Set VIII, this includes 15 of 15 students (missing 4 children due to
time constraints).

this measure (Figure 18a). The second type involved the use of a visual estimate and subdividing
multi-unit intervals in order to create equal partitioning (Figure 18b).

Figure 19 displays the proportion of students who achieved passing performances on successive
iterations of Problem Sets VII and VIII. Results indicate that Problem Sets I through VI prepared
students well for the transition to the new function of the line. Of the 15 students who were
administered Problem VII, nine (60%) passed at the first iteration, 12 (87%) passed by the second
iteration, and 14 (93%) by the third iteration. On Problem Set VIII, the passing performances
occurred at a more rapid rate. Twelve students (87%) passed at the first iteration, and the remaining
students passed at the second iteration. (Because all students passed by the second iteration, the
third iteration was not used for any students.)

Students who did not pass an iteration of Problem Set VII sometimes produced partial co-
ordination of units and multi-units as defined on the line, and at other times did not coordinate
these at all. The partial coordinations varied, but all had two common properties: (1) the 0 to 1
interval was not used consistently to define unit lengths; (2) the unit length varied on the line,
with the multi-unit often treated as a unit distance. Figure 20 illustrates the variety of non-passing
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FIGURE 19 Accumulating percentages of students passing over iterations of Problem Sets VII and VIII.

FIGURE 20 Proportion of three non-passing coordination types used for iterations of Problem Sets VII and VIII. We
used coordination type rather than student as the unit of analysis for non-passing coordination analyses (see Figure 14
caption for an explanation). For Problem Set VII, there are 9 cases involving 6 of the 15 students. For Problem Set VIII,
there are 2 cases involving 2 of the 15 students. For both Problem Sets, 4 students were not administered either due to
time constraints.
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performances. One student attempted to measure the unit distance but was imprecise (Figure 20a).
Other students were inconsistent with applying the unit distance to the task of locating the target
distance on the line (Figure 20b). Some showed a consistent unit distance, but one that was
not coordinated with the distance from 0 to 1 (Figure 20c). These performances illustrate the
challenges of applying prior agreements to new tasks that did not have linear measurement tools
available.

A Student’s Trajectory through Problems III–VIII

The prior analyses of pre- to posttest gains, the role of agreement use in gains, and the character
of student solutions in the Session 1 problems reveal how participation in the tutorial supported
student learning. In this section, we report a case study to provide insight into students’ trajectories
as they worked through a sequence of tutorial problems, drawing on agreements to mediate their
constructions. Our case student is Dustin, and we focus on his efforts to coordinate placements of
points on the line with the tutor as he moved through Problem Sets III–VIII. We had two guiding
purposes for this analysis of the dynamic aspects of the tutorial sessions. The first was to highlight
continuities and discontinuities in Dustin’s trajectory of solutions. The second was to understand
the way Dustin’s trajectory of solution approaches was interwoven with discrepant solutions, and
the ways that tutor and student invoked agreements in their efforts to reconcile discrepancies.

We chose Dustin as our case for two reasons. First, Dustin followed a typical trajectory as he
progressed through the tutorial problems, although his gain from pre- to posttest was at the upper
end of the distribution. Second, Dustin showed gains on three pre- to post-assessment items that
were similar to Problem Sets VII and VIII, items requiring a coordination of numerical and linear
units independent of the rods. Figure 21 shows the percent of students who passed these three
assessment items on pre- and posttest for the tutorial and control groups. Dustin’s performance,
like most students in the tutorial group, showed marked change. At pretest on the three items,
Dustin showed no evidence of coordinating numerical and linear units. For instance, on one
problem, a number line was shown with 5 and 6 marked on it, and students were asked to place 8
on the line. Dustin placed the 8 at the tick mark that should have been the location for 9. On the
posttest, like many in his tutorial cohort, he successfully coordinated numerical and linear units
in positioning the numbers for each of these three numerical-linear unit coordination problems.

Figure 22 contains a profile of Dustin’s trajectory from Problem Sets III–VIII on the x-axis,
showing which problem iteration he passed on the y-axis. Like most tutorial students, Dustin
ultimately achieved a pass on every problem type, passing by the third iteration on each. Further,
like many, Dustin showed greater difficulty passing iterations on the first three problem sets
(Problem Sets III, IV, and V) than the last three.

Problem Sets III and IV. As indicated in Figure 22, Dustin was presented with all three
iterations of Problem Set III, passing on the third (III.3). The character of Dustin’s efforts, his
interaction with the tutor, and the creation and use of agreements illustrates the dynamics of the
tutorial procedure as he shifted in his quantification of the rods, the line, and his coordination of
them.

As depicted in Figure 23, for each iteration of Problem Set III, Dustin started his construction
on the line at the zero point and proceeded to the right, consistent with the order agreement that
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FIGURE 21 Percentage of pre- and posttest passing performances for control and tutorial groups on problems requiring
a coordination of numerical and linear units.

had been established in the introductory Problem Set I. But for the first two iterations, Dustin’s
approach to quantifying unit-to-multi-unit relations with the rods was inconsistent with the skip
counting agreement, and the inconsistency created a context for the tutor to support Dustin’s
reflection on the tutor-student agreements. When presented with the first iteration (III.1)—“Mark
where 6 red rods is using purple rods”—Dustin concatenated six (instead of 3) purples, and

FIGURE 22 Dustin’s passing trajectory over iterations of Problem Sets III through VIII.
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FIGURE 23 Dustin’s performance on his three iterations of Problem Set III.

marked the end point of the purples with the numeral “6,” twice the length of the tutor’s (a
solution type represented in Figure 14e). When the tutor’s line was overlaid on Dustin’s, Dustin
commented on the tutor’s line noting, “You used the red one in twos” (tutor’s line was labeled:
0, 2, 4, 6). In the ensuing interaction, the tutor asked Dustin what he did, and Dustin indicated
that he used purples. In turn, the tutor explained her approach, indicating that she “skip counted,”
and referred to the 2:1 relation between reds and purples, saying “this is like 2 reds, 4 reds, 6
reds.” Towards the end of the interaction, the tutor asked, “So what do you think we should do
next time to make sure that our 6s are in the same place?” and Dustin responded, “Use 6 reds.”
The tutor went on to make reference to skip counting and its application to reds and purples. In
the end, the tutor expressed the Skip Counting Agreement as a means to (a) resolve the tutor and
student’s lack of coordination and (b) improve placements on the next problem.

Because of Dustin’s No Pass for Problem III.1, the tutor drew the Problem III.2 problem card,
which stated, “Mark 4 reds using the purple rods.” In their initial solutions, both Dustin and the
tutor placed the tick mark at the same place, each labeling the position appropriately as “4.” But
Dustin used only the unit rod (reds) to mark the target length (a solution he offered to solve
the discrepant placements in the prior iteration, Problem III.1). To support Dustin’s construction
of a unit-multi-unit coordination, the tutor once again pointed to the Skip Counting Agreement
to produce a length of 4 reds using only the purples, emphasizing ways of conceptualizing an
interpretation of a length of reds (units) in terms of purples (multi-units). The tutor drew problem
card III.3—“Mark where 8 red rods is using purple rods.” Dustin coordinated unit to multi-units
off the line, putting 2 reds on top of 1 purple rod, and then lined up successive multi-unit rods
independently of the unit rod (analogous to Figure 14a). In his explanation, Dustin referred
explicitly to the unit-multi-unit coordination, “because two [reds] fit on a purple.”

With Problem Set III successfully completed, the tutor drew the card for the first iteration of
Problem Set IV—“Mark where 3 light greens is using both light green and dark green rods.”
Dustin concatenated six light green rods on the line and marked the endpoint as “3,” producing a
length twice that of the tutor’s (Figure 24, IV.1). When the tutor’s number line was overlaid, the
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FIGURE 24 Dustin’s performance on his two iterations of Problem Set IV.

tutor asked Dustin if he used any agreements, to which he replied that he had not. In an effort
to support Dustin’s learning, the tutor reflected, “It looks like you did,” showing how Dustin’s
construction was consistent with the Order Agreement. The tutor then referred to the problem
card that asked for a length of 3 light greens, and pointed out that Dustin actually marked where
3 dark greens was instead of 3 light greens. Like Problem Set III, the tutor explained her solution,
emphasizing the unit-to-multi-unit ratio between light and dark greens that she “discovered”
while marking her number line as well as the directions on the problem card. Consistent with
the protocol, the tutor introduced a new agreement—the Every Number Has a Place but Doesn’t
Have to Be Shown Agreement. To do this, the tutor noted to Dustin that he had marked only 0
and 3 on the number line. Using Dustin’s construction, she asked, “Where would the 1 go if it
were on there? What about the 2?” She emphasized that they both knew this even if it had not
been written, creating an opening for the new agreement.

With the failure to reach the same placement for Problem IV.1, the tutor drew problem card
IV.2, which stated, “Mark where 5 light greens is using the light green and dark green rods.”
Dustin concatenated two dark greens with one light green off the line, and then placed them on
the line using zero as the start point (Figure 24, IV.2). Following Dustin’s explanation, the tutor
modeled the use of the new agreement by commenting that each of them omitted the “1” from
their final number line, but that they each knew it had been there because every number has a place.

Problem Sets V and VI. Problem Sets V and VI provided a transition between the line as a
recording device to that of a self-referential representation. Dustin worked on all three iterations
of Problem Set V, but then passed Problem Set VI on the first iteration. Dustin’s constructions for
these two problem sets are shown in Figure 25 and Figure 26.

When presented with Problem V.1—“Mark where 5 reds is”—Dustin began by concatenating
rods directly on the line. After concatenating two reds starting at the unmarked zero point, he
laid a purple on the multi-unit interval (see Figure 25, V.1), completing the line with reds. Dustin
then incorrectly treated the multi-unit purple length as if it were a unit length and marked the
equivalent of a length of 6 reds with the label “5.” When Dustin compared his own construction
with that of the tutor’s through the overlay procedure, he noted the discrepancy. Dustin indicated
that he used “2 reds and then a purple and then a red and a red” as he pointed to each of the
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FIGURE 25 Dustin’s performance on his three iterations of Problem Set V.

intervals on the line. The tutor then graciously indicated that she almost did the same thing, but
explained that as she was constructing her line she remembered the agreement that the distance
between counting numbers had to be the same. She showed that if the distance from 0 to 1 is a
red and 1 to 2 is a red, then another red must indicate where “3” should be. Toward the end of
the interaction, the tutor asked what they could do next time to ensure similar point placement.
Dustin responded, “Use the same space?”

For iteration V.2, the game card stated, “Mark where 6 reds is.” Dustin constructed the targeted
rod length, though he aligned the rod length with “1,” not conceptualizing the “1” as representing
one linear unit from the origin (see Figure 25, V.2). As a result, Dustin wrote “6” at the 7 position.
When the two number lines were overlaid, Dustin shook his head upon seeing that they did not
achieve the same point placement. Using the tutor’s number line overlaid on his own, Dustin
pointed to the 1 on the number line and observed, “I used [the] one right here because I forgot.”
The tutor clarified with Dustin that he treated the “1” as if it had been 0. In the interaction, the
tutor stated, “But it looks like we did the same thing. We knew that the space here was too big,
and it had to be cut in half.” Because Dustin did not write in any numbers besides the 6, the

FIGURE 26 Dustin’s performance on his only iterations of Problem Set VI.
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FIGURE 27 Dustin’s performance on his only iterations of Problem Sets VII and VIII.

tutor brought up the Every Number Has a Place Agreement, noting that Dustin could write the
numbers between 0 and 5 as a way to check his own work.

The tutor drew the card for Problem V.3—“Mark where 4 reds is.” Dustin carefully lined up
three red rods, coordinating the “1” on the number line with the endpoint for the first linear unit,
and coordinating the multi-unit on the line between “1” and the next tick mark with two red rods.
He wrote in only the “4” to mark the endpoint of the four red rods. Thus unlike the previous
problem, Dustin did not use the complete correct rod length. Instead, he coordinated physical
rods with linear distances marked on the line to construct an appropriate coordination of the rods
and the line in his labeling of 4 reds.

For Problem VI.1, Dustin made use of the agreements and ideas expressed in discussions of
the prior problems, even though the rods shifted in color and length. The problem card stated
“Mark where 4 light greens is.” Dustin constructed 4 light green rods and aligned it with the 0
tick mark (Figure 26, VI.1).

Problem Sets VII and VIII. On Problem Sets VII and VIII, Dustin passed on the first
iteration of each, displaying a coordination of unit and multi-unit linear distances. On problem
VII.1, Dustin correctly located the 5 on the number line without the use of rods, instead using
pinched fingers to iterate the unit (Figure 27, VII.1). The tutor asked about his use of agreements,
and Dustin responded that he used the agreement about the same distance between counting
numbers. Dustin extended this approach to the more complex coordination on Problem VIII.1,
where student and tutor were presented with a number line with only the 5 and 7 marked
and required to place the number 8. In Dustin’s approach, he used pinched fingers to divide
the multi-unit of 2 (the 5 to 7 interval) into two unit intervals. Without making a mark, he
gestured to the (unmarked) interval from 5 to 6, and then to the (unmarked) interval from 6
to 7, before extending his unit iteration to 8 (Figure 27, VIII.1). When the tutor asked how he
placed the 8, Dustin responded that he used his fingers, demonstrating his strategy. The tutor
reflected that she also thought about that, calling upon the agreement about the same distance
between counting numbers and that every number, like 6, has a place but does not have to be
shown.

Dustin’s performance and use of agreements on the final, more complex problems reflects
Dustin’s developing strength in coordinating numerical and linear units, a shift reflected in his
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pre- to posttest change score and consistent with trajectories of most other students in the tutorial
cohort.

DISCUSSION

Our analyses showed that a communication game was an effective tutorial strategy for sup-
porting students’ development of important mathematical ideas related to the number line.
In our discussion, we consider evidence of the efficacy of the tutorial, the dynamics of tuto-
rial interactions that supported learning, and microgenetic processes in students’ constructions
with attention to the curricular/pedagogical and cognitive frameworks that guided our tutorial
design.

The Efficacy of the Tutorial

Several of our analyses revealed that the tutorial led to student learning about important math-
ematical ideas. Perhaps the clearest evidence comes from our analysis of the pre- to posttest
gains of the tutorial group. The analysis revealed that tutorial students improved in their over-
all performance from pre- to posttest, and the effect size was large, approaching two standard
deviations.

In our research design to evaluate the efficacy of the tutorial, we were careful to control for
two threats to validity. The first threat was a regression to the mean at posttest. Recall that the
students who participated in the study performed at the lower half of their classroom populations
(at pretest). Thus at posttest these students might appear to develop new understandings across
testing sessions when the gain was (to some extent) an artifact of initial measurement error. The
second threat was practice with the assessment items: Since we used the same assessment for
pre- and posttest, improvement at posttest could be attributed to prior experience with the items
at pretest.

To address these threats in our design, we randomly assigned students matched for both pretest
score and classroom to the tutorial and control groups. Our analysis revealed that the improvement
of the control students was not comparable to the improvement of tutorial students, indicating
that tutorial students’ gains were due to participation in the tutorial procedure and not due to a
statistical artifact (regression to the mean) or repeated testing.

Another source of evidence for the tutorial’s efficacy was analysis of students’ performance
across problem iterations in the tutorial. For most of the problems, many students did not solve
the first iteration adequately, but by the third iteration, all or almost all students passed. One
critique of this evidence could be that students were simply memorizing solutions on the earlier
iterations and using them on subsequent ones. But again we purposely controlled for this potential
threat to validity by shifting the values of the target numbers and the numbers across problem
iterations, so improvements could not result from mere memorization. Further, in Session 1,
problem sets were designed as related pairs (e.g., Problem Sets III and IV), and the second
set was more complex than the first. Students often solved the problems in the second set more
quickly (with fewer iterations) than the first set, again corroborating a learning effect of the tutorial
procedure.
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SUPPORTING GENERATIVE THINKING 469

Dynamics of Tutorial Interactions that Supported Learning

Guided by our curricular/pedagogical model, we designed the tutorial with features that afforded
the emergence of a supportive environment for learning. These features included: Cuisenaire
Rods that served as physical magnitudes to be recorded on an open number line; a sequencing
of problem sets in Session 1 (from recording functions through self-referential functions) and
Session 2 (from negative number to absolute value/symmetry); a progressive development of
planned agreements that afforded student generative use of number line principles to mediate
their number line constructions and adjudicate discrepant solutions to tutorial problems; wrap-up
sessions to support and consolidate learning; iterations within problem sets to provide students
multiple opportunities to work through the ideas supported by the tutorial. Together, these design
elements were intended to afford emergent activities that would support generative number
line understandings. A factorial design in which we systematically controlled or varied design
features was not feasible, nor was it conceptually warranted given our focus on the emergence of
a supportive learning environment (Yin, 2009). Our central concern was analysis of the interplay
of the ways that students and tutors drew on design elements like Cuisenaire Rods, tasks, tutorial
strategies, and agreements as they progressed through the tutorial.

We focused on agreement use as an important indicator of the ways that students were learning
to solve problems and build understandings of core mathematical ideas. For this analysis, we
treated students’ performance in the wrap-up sessions as a measure of students’ mindful use of
agreements in approaching number line problems. Students varied in the extent that they used
the agreements to organize their problem solving, and this variation enabled us to corroborate
whether reflective agreement use supported learning. We found that mindful use of agreements
differentiated students who gained more and less from the tutorial. In Session 1, agreement use
was related to the understanding of order, unit, and origin as students moved from the use of
the line as a recording device to the use of the line as an autonomous representational object.
In Session 2, agreement use was related to the understanding of entailments on the number line
itself, as students constructed negative numbers, order relations across negatives and positives,
and reflected on problems involving symmetry as a means of solving problems. We interpret the
positive effects of the tutorial sessions as the result of the complex of design elements that were
mediated through the construction and use of agreements.

Microgenesis of Number Line Representations in Students’ Solutions
to Tutorial Problems

Several of our analyses focused on the process whereby students constructed number line rep-
resentations over the course of the Session 1 tutorial. Our framework provides an account of
the construction of modeling/recording functions (Figure 1) and self-referential functions of the
number line (Figure 2), and we use it here to reflect on the ways that students were coordinating
Cuisenaire Rods and lines more and less successfully, as well as ways that students’ iterative
engagement with the number line across problem sets supported their learning.

On the open number line modeling/recording problems (Problem Sets III, IV), we documented
students’ quantifications of the rods, quantifications of the line, and their coordination of these in
the construction of hybrid representations. (See the three strands of activity depicted in Figure 1.)
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Most students’ treatments of the rods were eventually informed by their conceptualization of the
line; students concatenated the rods end-to-end, anticipating that the arrangement of rods needed
to be linear to be represented on the line. Reciprocally, most students eventually conceptualized the
line in terms of the rods; for example, the zero point on the line became an origin for a measure of
the rods in microgenetic constructions. Although the line and the rods were resources in virtually
all students’ construction of hybrid representations on the modeling/recording problems, many
students did not initially produce adequate representations for the first iteration of Problem Set III
(Problem III.1, Figure 13). When conceptualizing the rods in terms of the line, for example, many
students did not differentiate multi-units and units. When interpreting the line in terms of the rods,
a few students did not conceptualize the distance on the line as a distance from the zero point
(even though the zero point was marked). The microgenesis of students’ coordinated construction
of rod and line units improved over the iterations of the modeling/recording problems. Almost all
students achieved adequate coordinations by the third iterations of Problems III and IV, although
there was variation in the sophistication of successful strategies.

The two transitional problem sets (V and VI) were designed to maintain continuity with the
prior open number line recording problems involving unit/multi-unit rod relations (Problem Sets
III and IV), while providing a segue into problems in which the number line was used as an
autonomous, self-referential object (Problem Sets VII and VIII). In Problem Sets V and VI,
we added irregularly spaced tick marks and changed the single number represented on the line
from 0 (in Problem Sets III and IV) to 1 (Problem Set V) or 2 (Problem Set VI) in order to
support students’ principled use of agreements and rods despite non-canonical number lines.
As we expected, these changes created challenges for students, although their prior learning
provided a foothold. When conceptualizing the rods, students were often initially influenced by
the irregularly positioned tick marks and did not organize their solutions by the unit distance
principle; when zero was not shown, some students treated another number as the origin. But
most students worked through these challenges, and by the end of the third iterations almost all
students achieved adequate constructions.

In the final problems in Session 1 (Problem Sets VII and VIII), we specified the positions of
two numbers on the line, and thus the line became a representation in which all (real) numbers
had a place without any reference to rods at all. For these problems, the character of students’
hybrid constructions shifted to a coordination of numerical units (a count of positions of points on
the line) with linear units (congruent intervals). Students’ prior work with the tutorial problems
with rods and agreements appeared to prepare them well for the microgenetic construction of
these representations in which Cuisenaire Rods played no discernable role. Though most tutorial
students did not pass this type of item on the pretest, most solved the problem in the first iterations
of the tutorial and appeared to draw on what they had learned from working on the modeling and
transition problems using the associated agreements.

CONCLUDING REMARKS

When students are presented with number line representations in school, they typically do not
explore the generative principles underlying the geometric and numeric properties of the line, and
the varied normative conventions for interpreting number line representations. The consequence
for students is that many leave the elementary grades with shallow understandings that are not
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SUPPORTING GENERATIVE THINKING 471

generative across number line representations and problems; indeed, few students in this study
showed initial evidence of understanding fundamental principles of integers on the line, principles
such as linear unit, multi-unit, and absolute value. The lack of focus on generative understanding
of the line is unfortunate, especially in light of the frequent use of the number line in secondary
mathematics and beyond. Our findings—the efficacy of the tutorial, students’ learning trajectories,
mediating effects of agreement use, and the microgenesis of representations—provided empirical
corroboration for the utility of the approach for supporting student learning as well as illuminating
the conceptual and interactional processes that support learning trajectories for hard-to-learn,
hard-to-teach ideas.

The framework and findings from this study are a core resource for our current research and
development work in the Learning Mathematics through Representations project. Building on the
tutorial study and other research, we are designing a curriculum unit on integers and fractions,
using the number line as the principal representational context (e.g., Saxe et al., 2009; Saxe
et al., 2009; Saxe et al., 2007). As we scale up to the level of the classroom, we are adapting the
sequence of tutorial problem sets as a “problems of the day” lesson format that engages students
with challenges requiring the class, over time, to construct and apply “Number Line Principles
and Definitions.” Our pilot studies are yielding very promising evidence that the approach can
support students’ rich understandings of integers and fractions on the number line. We believe
that the principles-based approach to mathematics teaching and learning will eventually have
utility in other domains and at other grade levels.
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APPENDIX

Assessment Items Used on the Pre- and Posttests
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Appendix (continued)
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