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 Abstract 

 This paper presents an analytic approach for understanding the interplay through 
time between “scientific” and “everyday concepts” in a mathematics classroom commu-
nity. To illustrate the approach, we focus on an elementary classroom implementing an 
integers and fractions lesson sequence that makes use of the number line as a principal 
representational context. In our analysis of the community’s emerging collective prac-
tices (recurring structures of joint activity), we trace the interplay between children’s 
sensorimotor actions (displacing, counting, and splitting) and the mathematical defini-
tions supported in the classroom, like definitions of unit interval or equivalent fractions. 
In our illustrative analysis, we find that the teacher orchestrated collective practices to 
support the use of actions to make sense of the formal definitions, and the use of defini-
tions to regulate actions. Though we illustrate the analytic approach for a particular 
classroom community, the approach illuminates teaching-learning dynamics that tran-
scend any particular classroom or subject matter domain.  © 2015 S. Karger AG, Basel 

 Formal education presents teachers and students with a conundrum. Teachers 
are tasked with guiding and supporting students’ efforts to learn knowledge that has 
developed over the history of disciplines. However, the formalized character of this 
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disciplinary knowledge means that it is removed from the local, situated knowledge 
that children construct in their daily lives. How might teachers support children in 
reconciling this problematic divide? How might students create connections between 
local knowledge they generate in their everyday, out-of-school lives and what may 
appear as alien ideas presented in school?

  In his sociohistorical treatment of cognitive development, Vygotsky [1986] cast 
the conundrum as a dialectic between “scientific concepts” and “everyday” (or 
“spontaneous”) concepts. 1  Vygotsky argued that these two kinds of concepts de-
velop in different directions. Everyday concepts, which have roots in children’s re-
actions to local situations, develop from the “bottom up,” towards increasing levels 
of adequacy and generality. Scientific concepts, introduced through explicit in-
struction and initially understood at a shallow level, develop from the “top down” 
as children enrich and transform them through their conscious application to local 
situations. In this process, Vygotsky argued that there is a potential for an interplay 
between the two strands of development. Scientific concepts can provide avenues 
for the development of everyday concepts such that everyday concepts can develop 
in the direction of historically elaborated systems of generalization (e.g., algebra; 
Newtonian mechanics). At the same time, everyday concepts can provide avenues 
for making sense of developing scientific concepts so that scientific concepts be-
come explored and fleshed out in relation to the material conditions of daily life. Of 
course, such a productive interplay may not be supported in instruction. Thus, stu-
dents may not acquire scientific concepts at all or merely acquire what Alfred North 
Whitehead referred to as  inert knowledge : “ideas that are merely received into the 
mind without being utilized, or tested, or thrown into fresh combinations” [White-
head, 1959, p. 193]. Although scholars have called attention to the import of rela-
tions between local and disciplinary knowledge in instruction and development 
[e.g., Davydov, 1990; Gutiérrez & Rogoff, 2003; Hershkowitz, Schwarz, & Dreyfus, 
2001; Karpov, 2003], the interplay between top-down and bottom-up developmen-
tal processes over the course of lessons has received limited systematic analysis and 
empirical study [exceptions include Tabach, Hershkowitz, Rasmussen, & Dreyfus, 
2014; Yoshida, 2004]. Such a longitudinal analysis has the potential to further illu-
minate a critical nexus of cognitive-developmental and sociocultural processes; it 
also has the promise of informing our understanding of a core challenge of formal 
education.

  In this article, we build upon Vygotsky’s insights about the interplay between 
top-down and bottom-up developmental processes. Our goal is to understand what 
it might look like for a productive interplay to be supported in classroom instruction 
as lesson topics shift over time. To leverage our analytic efforts, we focus on a fifth-
grade case study classroom in which a teacher is implementing a curriculum called 
 Learning Mathematics through Representations  (LMR) [Gearhart & Saxe, 2014; Saxe, 
de Kirby, Le, Sitabkhan, & Kang, 2014; Saxe, Diakow, & Gearhart, 2013a]. The LMR 
curriculum is a 19-lesson sequence that provides a fruitful context for study, a context 
in which a potential for an interplay stands out in remarkably clear relief. The cur-

  1    Vygotsky originally referred to “spontaneous concepts” as “everyday concepts,” with a shift in ref-
erence occurring in response to Piaget’s usage of the term, “spontaneous concepts” [Temina-Kingsolver, 
2008] [see also: Hedegaard, 1990, 2007; Moll, 1990; Nelson, 1995; Panofsky, John-Steiner, & Blackwell, 
1990; Wells, 1994; Wertsch, 1991]. 
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riculum introduces a register of 17 mathematical definitions related to core ideas 
about integers and fractions on the number line. 2  From a Vygotskian perspective, 
these number line definitions constitute scientific concepts. The lesson sequence also 
affords a treatment of everyday concepts – children’s everyday sensorimotor actions 
that develop in daily activities [Piaget, 1970b]. These actions can be used as a genera-
tive basis for approaching number line problems and to make sense of number line 
definitions. Further, the length of the lesson sequence allows for a longitudinal anal-
ysis of the collective practices that emerge in the classroom – that is, recurring forms 
of activity in which norms, values, and social positions are constituted and re-consti-
tuted over time [see Saxe, 2012]. Such collective practices, as we will demonstrate, 
provide us with an important nexus for analyzing the interplay between scientific and 
everyday concepts through time.

  We organize our treatment in several sections. In the first, we describe proper-
ties of the LMR register of number line definitions (scientific concepts), and in the 
second, we present a corresponding analysis of relevant everyday concepts. In our 
treatment, these everyday concepts are sensorimotor actions and their coordina-
tions – specifically, counting, displacing, and splitting actions. We show that stu-
dents may productively extend these everyday actions to conceptualize and solve 
number line problems. The third section of the article presents our framework for 
understanding the interplay between definitions and actions through time. In this 
section, we elaborate the argument that actions provide children with the initial 
basis for interpreting the line as an object with mathematical properties. Further, 
we show how these actions also afford means of making sense of number line def-
initions. We then introduce a longitudinal framework that focuses on shifting rela-
tions through time between actions and definitions in problem solving activity. In 
the fourth section, we use the framework to analyze six episodes extracted from our 
longitudinal video record of our target classroom; of particular interest are collec-
tive practices that emerge in the classroom community and the way these practices 
provide contexts for a productive interplay between actions and definitions. In a 
fifth and concluding section, we consider the utility of the framework for studying 
classrooms that extend beyond our illustrative case and to other knowledge do-
mains.

  The LMR Curriculum Unit and Its Register of Mathematical Definitions 3  

 The LMR curriculum consists of 19 lessons that move from core ideas in integers 
(lessons 1–9) to fractions (lessons 10–19). Over the course of the lessons, the curricu-
lum introduces 17 integers and fractions number line definitions. As a network of 

 2     We use the expression “mathematical register” in ways that share features with Halliday’s original 
use of the term [Halliday, 1978]. Similar to Halliday, we use the term “mathematical register” to refer to 
the word forms that come to serve specialized functions in communication about mathematical ideas [for 
further discussions of Halliday’s “mathematical register” in classroom practices see also Forman, McCor-
mick, & Donato, 1997; Schleppegrell, 2007]. At the same time, we also use the term to communicate the 
network of “scientific concepts” (or formal definitions) that the LMR curriculum supports.

  3  From this point in the article, in most instances, we will omit the term “principles” when we refer 
to “definitions and principles.” 
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scientific concepts, the definitions provide a general interpretation of integers and 
fractions on the number line appropriate for the upper elementary grades. 4 

  The definitions for the integers lessons are contained in  figure 1 . As indicated in 
the figure, early in the integers lessons the curriculum introduces definitions basic to 
the number line, like  order  (lesson 1) and  zero is a number  (lesson 1). Over the course 
of the integers lessons, key ideas of  interval  (lesson 2),  unit interval  (lesson 2) and 
 multiunit interval  (lesson 3) are defined. Entailments of these ideas are also defined 

 4  A more complete description of the curriculum as well as the design research that informed its 
development is contained in Saxe, de Kirby, Le, Sitabkhan, and Kang [2014]. The curriculum materials 
are downloadable at http://www.lmr.berkeley.edu/. Useful reviews of curricular approaches to linear mea-
surement are contained in Smith, Males, Dietiker, Lee, and Mosier [2013], and a useful review of the de-
velopment of measurement understandings in children is contained in Lehrer [2003].

–4 –3 –2 –1 0 1 2 3 4

Name Definition Example

–4 –3 –2 –1 1 2 3 4

Greater

Less

Negatives

0

Positives

Order

(Lesson 1)

Numbers increase in 
value from left to right.  
Numbers decrease 
from right to left.

0 is a 
number

(Lesson 1)

0 is a number, so it 
has a place on the 
number line.

0 1 2 3 4

0 1 2 3 4 5 6 7 8

same

1 1 1

3 2

Unit
interval

(Lesson 2)

A unit interval is the 
distance from 0 to 1 
or any distance of 1.

The distance between 
any two numbers on 
the number line.

Interval

(Lesson 2)

0 1 3 4

2

Multiunit 
interval

(Lesson 3)

A multiple of a unit 
interval.

Symmetry

(Lesson 6)

For every positive 
number, there is a 
negative number that 
is the same distance 
from 0.

Every number has a 
place on the line, but 
not all need to be 
shown.

Every number 
has a place

(Lesson 3)

0 3
6 9

1 1 1
3 3 3

Absolute 
value

(Lesson 6)

The distance of a 
number from 0. –4 –3 –2 –1 0 1 2 3 4

Circle two numbers with the same absolute value.

|3| = 3|–3| = 3

0 5–13 13–5

  Fig. 1.  Number line definitions: integers. 
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later in the lesson sequence –  symmetry  (lesson 6) and  absolute value  (lesson 6). In 
addition, number line “principles” are included in the definition list, such as  every 
number has a place  (lesson 3).

  The definitions for the fractions lessons ( fig. 2 ) build upon the integers defini-
tions. Early in the fractions lessons  subunit  is introduced (lesson 10), and subsequent-
ly,  subunit  is used as a basis to define  numerator  and  denominator  on the number line 
(lesson 11).  Mixed number  follows as a combination of integers and fractions defini-
tions (lesson 13). Multiplicative relations intrinsic to the domain of fractions/rational 
number are made explicit in the later fractions lessons with the introduction of the 
 equivalent fraction  definition (lesson 15). As in the integers lessons, number line prin-
ciples are included in the definition list. An example is  benchmarks : “You can tell 
about how big a fraction is by comparing the numerator and the denominator” (les-
son 18). As a set, the definitions and principles functionally integrate the domains of 
integers and fractions in a common framework.

  As the number line is central to the LMR curriculum, we are able to build on and 
contribute to literatures in the learning sciences on children’s developing understand-
ings of the number line [Booth & Siegler, 2008; Earnest, 2012; Petitto, 1990; Saxe, Ear-
nest, Sitabkhan, Haldar, Lewis, & Zheng, 2010; Siegler & Opfer, 2003] as well as linear 
representations [Barrett, Sarama, Clements, Cullen, McCool, Witkowski-Rumsey, & 
Klanderman, 2012; Lehrer, 2003; Núñez, 2011; Piaget & Inhelder, 1956; Piaget, Inhel-
der, & Szeminska, 1960; Saxe, Shaughnessy, Gearhart, & Haldar, 2013b]. As a whole, 
these literatures reveal that young children show capabilities to order numbers along 
a linear dimension; however, only later do children show capabilities to generate uni-
form metric properties in their ordering of numbers. In our longitudinal treatment, 
we focus on the import of the dynamic interplay between top-down and bottom-up 
processes in children’s developing metric understanding of the number line.

  Everyday Actions with Logico-Mathematical Properties: Resources for 

Constructing Solutions to Number Line Problems and Making Sense of 

Mathematical Definitions 

 Various scholars have argued that schemes for sensorimotor actions provide a 
core resource for children’s developing understanding of logico-mathematical ideas, 
whether from ontogenetic [Langer, 1980, 1986; Núñez & Marghetis, in press; Piaget, 
1963, 1970a; Steffe, von Glasersfeld, Richards, & Cobb, 1983] or microgenetic 
[Schmid-Schönbein & Thiel, 2010; Thiel, 2012] perspectives. 5  Piaget [1970a, pp. 16–
17] provides a clear illustration in his reminiscence of a child’s construction of the 
commutative property of counting. In this case, the child’s construction of new math-
ematical knowledge is dependent on particular properties of sensorimotor actions 
related to the practice of counting.

  This example, one we have studied quite thoroughly with many children, was first suggested 
to me by a mathematician friend who quoted it as the point of departure of his interest in 
mathematics. When he was a small child, he was counting pebbles one day; he lined them up 
in a row, counted them from left to right, and got ten. Then, just for fun, he counted them 

  5  A more recent literature on embodied cognition [Lakoff & Núñez, 2000; Radford, 2014] argues for 
the general importance of embodied action in cognitive and developmental processes. 
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Name Definition Example

Subunit

(Lesson 10)

Dividing a unit into 
equal distances 
creates subunits.

0 1 2

Subunit

Unit

Fraction

(Lesson 11)

numerator
denominator

0 1 2

Numerator
Denominator

3
4

Mixed 
number

(Lesson 13)

A whole number and a 
fraction. 0 1 2

1
2

3

2

1
22

Whole 
numbers as 

fractions

(Lesson 14)

A whole number 
can be written as a 
fraction.

Equivalent 
fractions

(Lesson 15)

Fractions that are in 
the same place but 
with different 
subunits.

0 1

2
8

Subunit

New subunit

1
4

0 1 2 3 4

Unit

0
3

3
3

6
3

9
3

12
3

Denominator

(Lesson 11)

The number of 
subunits in a unit. 0 1 2

Unit

denominator = 4

0 1 2

numerator = 3

Numerator

(Lesson 11)

The number of 
subunits.

0 1

0 1

0 1

0 1

number of 
subunits

2

3

4

5

Length of 
the subunit

(Lesson 10)

The more subunits in 
a unit the shorter the 
subunits are.

0 11
2

2
100

n is very small
d is large

n is about 
half of d

n is about the 
same as d

26
50

8
7

6
14

39
40

Benchmarks

(Lesson 18)

0, ¹/  , and 1 are 
benchmarks. You can 
tell ABOUT how big a 
fraction is by 
comparing the 
numerator and 
denominator.

  Fig. 2.  Number line definitions: fractions. 
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from right to left to see what number he would get, and was astonished that he got ten again. 
He put the pebbles in a circle and counted them, and once again there were ten. He went 
around the circle in the other way and got ten again. And no matter how he put the pebbles 
down, when he counted them, the number came to ten. He discovered here what is known 
in mathematics as commutativity, that is, the sum is independent of the order. But how did 
he discover this? Is this commutativity a property of the pebbles? It is true that the pebbles, 
as it were, let him arrange them in various ways; he could not have done the same thing with 
drops of water. So in this sense there was a physical aspect to his knowledge. But the order 
was not in the pebbles; it was he, the subject, who put the pebbles in a line and then in a cir-
cle. Moreover, the sum was not in the pebbles themselves; it was he who united them. The 
knowledge that this future mathematician discovered that day was drawn, then, not from the 
physical properties of the pebbles, but from the actions that he carried out on the pebbles.

  Of course, as Piaget indicated, the ability to use and reflect on schemes for sensori-
motor actions is not unique to his mathematician friend or to counting actions ap-
plied to discontinuous quantities, like pebbles. Indeed, all children develop senso-
rimotor action schemes that may serve as resources for the construction of logico-
mathematical knowledge across contexts – like the potential for counting pebbles 
with one ordering and then producing the same value by counting them in a different 
order [see Inhelder & Piaget, 1969]. Furthermore, when children extend such actions 
and logico-mathematical coordinations to a cultural artifact like the number line, ac-
tions can provide a resource for generating mathematical relations with the artifact 
and support mathematical problem solving.

  We identify three action schemes that can serve as generative resources for stu-
dents’ construction of mathematical relations with the number line: counting, displac-
ing, and splitting. These actions take on logico-mathematical properties as children 
construct varied kinds of reversibilities or mathematical closure, both properties of a 
mathematical group [see Beth & Piaget, 1974; Inhelder & Piaget, 1958]. The actions 
enable the treatment of the number line as a mathematical object, one in which inter-
vals can be composed and decomposed. For example, children gain an understanding 
that as one counts tickmarks in one direction, one can return to the starting point by 
counting backwards the same number of marks. Further, as one displaces a line seg-
ment one unit to the right, one can reverse the direction one unit distance to the left 
and again return to the original position. Finally, as one splits an interval into parts, 
one can recompose the segments to achieve the whole of the original length. Children’s 
reflections on properties of these actions and their coordination will figure centrally 
in our treatment of children’s developing knowledge related to the number line.

  Counting Actions 6  

 Like Piaget’s mathematician friend, many children have engaged in counting 
activities involving discontinuous quantities prior to school entry [Fuson, 1988; Gel-
man & Gallistel, 1978; Sarnecka & Carey, 2008; Saxe, Guberman, & Gearhart, 1987]. 

 6     Though we identify “counting” as an action scheme in our analysis, we appreciate that actions are 
situated in sociohistorical contexts, and different communities have developed different representation 
forms for number [Chrisomalis, 2010; Lean, 1992; Menninger, 1969; Saxe & Posner, 1982]. We might 
more properly refer to counting actions as the production of ordinal and/or cardinal one-to-one corre-
spondences between cultural forms of representation and to-be-represented objects [see Gelman & Gal-
listel, 1978; Saxe, 1977, 2012].
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Such counting actions may be used as a resource to explore logico-mathematical 
properties attributed to the number line [Bofferding, 2014; Fosnot & Dolk, 2001]. 
Imagine, for example, a child counting tickmarks beginning at 0 and counting with 
two jumps to 2, and then negating the addition with two counting pulses to 0 ( fig. 3 a), 
perhaps reflecting that the second count of two undoes the first. A child might extend 
the exploration with a count to four ( fig. 3 b) or begin with different starting points 
( fig. 3 c). Through the reflection of such counting actions, students may produce a 
generalization: the addition of any value can be inverted by subtracting the same 
value.

  Children’s application of counting actions could be used generatively to concep-
tualize and solve number line problems. For example, imagine a problem like that 
depicted in  figure 4  – a line with some tickmarks labeled and a student required to 
label the unlabeled mark. Clearly, counting could be drawn upon as a resource to 
conceptualize such a number line problem and to generate a solution. However, as 
we point out shortly, the solution may capture only a coordination of order relations, 
not the construction and coordination of metric linear units.

  Displacing Actions 

 In addition to counting, young children engage in activities outside of the class-
room in which they displace objects from one position to another, like sliding a stick. 
In such activities, a child may reflect on logico-mathematical properties of actions, 

a b

c

0 1 2 3 4
two one

one two

0 1 2 3 4

one fourtwo three

onefour twothree

0 1 2 3 4

two one

one two

  Fig. 3.   a  Counting two consecutive integers beginning with 0 and then reversing the count and 
ending at starting point.  b  Counting four consecutive integers from 0 and then reversing the 
count, ending at starting point.  c  Counting two consecutive integers from 1 and then reversing 
the count, ending at starting point. 
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like the fact that moving an object from one location to another can be negated by 
reversing the movement to its starting point, or invariant properties of physical ma-
terials, like the conservation of length – the length of the stick is invariant as it is re-
located in space [Piaget et al., 1960].

  How might the reflective coordination of displacement actions be extended to 
conceptualizing and solving problems on the number line? Imagine, for example, a 
student presented with a number line problem contained in  figure 5 : Find the posi-
tion of 7 given the positions of 2 and 3. One approach to solving the problem could 
be through a coordination of displacing and counting actions. For example, a block 
the length of the unit interval could be iteratively displaced and coordinated with 
counting actions to identify the position of 7. These coordinated actions may also lead 
the child to the inverse entailment corroborated by further exploration: that the ac-
tion can be inverted to lead to the starting point – five displacements to the left of 7 
returns to the starting point.

  As with all sensorimotor actions, displacement actions take on logico-mathe-
matical properties insofar as they are conceptualized as elements in a closed system; 
the additive composition of one length to another leads to a third in the system, and 
the act of composition can be decomposed through the inverse operation. To engage 
with such actions would require that children conceptualize the length of the block 
as invariant as it is translated from one position to another, end-to-end [Piaget et al., 
1960].

  Splitting Actions 

 Subdivision [Piaget et al., 1960] or splitting [Confrey & Smith, 1995; Steffe &
Olive, 2010] is the final class of actions we review that has logico-mathematical prop-
erties relevant to the number line. In their daily activities, children may produce fair 
shares and show rudimentary knowledge of splitting, whether in sharing discontinu-
ous quantities [Davis & Pitkethly, 1990] or continuous quantities [Empson, 1999; 
Hunting & Sharpley, 1988; Pothier & Sawada, 1983]. 7  As with displacing and count-

0 1 2
  Fig. 4.  Labeling a marked 
point on the number line par-
titioned into intervals of un-
equal lengths. 

  7  Authors differ somewhat in their technical use of the term “splitting,” and Steffe and Olive [2010] 
have elaborated at some length how his use of the term differs from that of Confrey’s. We make clear our 
meaning of the term in the paragraphs to follow. 

2 3
  Fig. 5.  Number line problem: 
Find the position of 7 on the 
number line. 
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ing actions, children may observe that splitting actions can be reversed. For example, 
a collection of candies can be split into groups and then reassembled, or a stick may 
be split and then returned to its original configuration.

  Splitting actions can be central to the identification of both integers and fractions 
on the number line. Consider, for example, the problem depicted in  figure 6 a: Find 
the position of 4 given the location of 3 and 6. To support a solution with the knowl-
edge that 4 is between 3 and 6, students could draw upon splitting to divide the line 
several times in order to estimate the appropriate point. Or, consider the problem 
involving rational numbers in  figure 6 b: Locate the position of  3 / 4  on the number line 
that is labeled with 0, 1 and 2. In such a case, subdividing the line through successive 
splits would be an approach that would give access to the construction of numbers 
between other numbers.

  Actions, Definitions, and Solving Number Line Problems 

 We now provide a framework that is intended to capture relations between ac-
tions and definitions as students conceptualize and solve number line problems. The 
framework has two principal foci. The first consists of children’s extension of actions 
to conceptualizing and solving number line problems and the challenges that chil-
dren face in this process. The second focuses on children’s construction of action-
definition relations: children’s use of actions in making sense of definitions as well as 
children’s use of formal definitions to regulate actions. In a later section, we will apply 
the framework to a longitudinal analysis of a classroom community.

  Drawing on Sensorimotor Actions to Solve Number Line Problems:
The Challenge of Specialization and Coordination 

 Each kind of action and its negation – whether in counting, displacing, or split-
ting – is pertinent to constructing solutions to mathematical problems on number 
lines. We discuss two classes of adaptations that children must make in order to suc-
cessfully perform this extension. The first is related to the specialization of schemes 
for sensorimotor action to accommodate the conventions and material properties of 
the number line. The second challenge is related to the coordination of actions; the 
focus is on the way different kinds of actions are used in concert to solve number line 
problems. We have highlighted processes of specialization and coordination of ac-
tions in problem solving activity in  figure 7 , and we note issues related to each below.

a b
0 13 6 2

  Fig. 6.   a  A number line with the interval from 3 to 6 labeled with the task to identify the position 
of 4.  b  A number line with labels for 0, 1, 2 with the task to identify the position of  3 / 4 . 
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  Consider problems of specialization. In order for actions to be useful, children 
need to specialize them for the number line. This specialization has two core facets. 
First, children must perform actions in a way that respects the ordering of numbers 
on the line. By convention, the number line is oriented horizontally, and numbers 
increase in value from left to right. Thus, counting towards the right or displacing 
towards the right implies an increase in numerical value, and vice versa. Similarly, the 
positions generated through splits take on value with respect to the left-right axis of 
the line.

  Second, children must specialize these actions in ways that treat the number line 
as representing a continuous linear dimension that can be partitioned into metric 
units. This kind of specialization often presents difficulties for children. Indeed, chil-
dren’s actions often reflect their treatment of the line as comprised of discontinuous 
elements (e.g., tickmarks) rather than continuous lengths [Piaget, 1952; Saxe et al., 
2013b]. Thus, in counting actions, a child may count tickmarks in conceptualizing 
and solving a problem like the one depicted in  figure 8 ai, identifying the missing val-
ue incorrectly as “3,” not “4” ( fig. 8 aii). In displacing actions, a child may use a rigid 
block as a measure for length ( fig. 8 bi), but displacing actions may be carried out in 
ways that do not respect length as a continuous dimension, leaving gaps ( fig. 8 bii). In 
splitting actions, a child can generate positions for missing values by creating subdi-
visions, as when a child is asked to identify the position of 4 on a line with 3 and 6 
labeled ( fig. 8 ci); however, the child’s splits may not well coordinate linear distance 
with numerical values, splitting at the midpoint between 3 and 6 to show 4 ( fig. 8 cii) 
or creating two splits, one to show that 4 is near 3 and another to show that 5 is near 
6 [Piaget, 1952; for an extended argument and empirical support, see Saxe et al., 
2013b].

  Next, consider problems of coordinating actions in the course of a problem solu-
tion like that depicted in  figure 9 ai [Saxe et al., 2013b]. In the problem, a child is asked 
to place 12 on a number line with 9 and 11 labeled. Through counting, a child may 
position the number 12 to the right of 11 with an interval that is the same as that be-
tween 9 and 11 ( fig. 9 aii). What the child has not accomplished in this labeling is suc-
cessfully coordinating actions – for example, splitting the interval from 9 to 11 into 
unit intervals and then using one of those unit intervals to displace and count one 

Counting 
actions

sp
ec

ia
liz

in
g 

Displacing 
actions

Coordinating 
actions

Splitting 
actions

sp
ec

ia
liz

in
g 

0 1
?

Number line problem

  Fig. 7.  Actions specialized 
and coordinated as they are 
used to solve a number line 
problem. 
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one two three

0 1 2

ai. Write a number for the unlabeled
point.

four six

four!

aii. A child treats the tick marks as 
a set of countables.

bi. Show the place for 6 on the
number  line.

2 3

63 63

2 3 six!

0 1 2 3

bii. A child displaces the block to locate 
the position of 6 but leaves gaps.

ci. Show the place for 4 on the 
number line.

A child “splits” the number line
to find a place for 4.

cii. 

  Fig. 8.  The specialization of counting ( a ), displacing ( b ), and splitting actions ( c ) in which length 
is treated as a discontinuous quantity. 

ai. aii.

bi. bii. 

9 11 9 11 12

Counting to label 12.Show the position for 12.

9 11 9 11 1210

splitting displacing

counting

Splitting to generate a unit 
length.

Coordinating splitting with 
displacing and counting.

  Fig. 9.  The coordination of counting, displacing, and splitting actions in labeling a position for 
12 on a number line.  a  The problem and a counting solution.  b  A solution that coordinates split-
ting, counting, and displacing actions. 
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linear unit to the right of 11, in order to label 12 ( fig. 9 bii); instead, the child has placed 
12 in the position of 13 ( fig. 9 bi).

  We have pointed to the way in which students’ counting, displacing, and splitting 
actions can provide footholds into solving number line problems, opening up new 
developmental challenges. As they begin solving number line problems, students may 
specialize actions to accommodate the ordering of numbers on the line, but they may 
not initially treat the line as a continuous linear dimension. New challenges emerge 
when students begin treating the number line as a representation of continuous quan-
tities, requiring metric units of length and a coordination of multiple actions.

  The Potential for a Productive Interplay between Actions and the Register of 
Definitions: Bottom-Up and Top-Down Relations 

 So far, our focus has been students’ specialization and coordination of actions in 
the process of conceptualizing and solving number line problems, challenges that are 
schematized in  figure 7  and reproduced in the inner oval of  figure 10 . We now turn 
to LMR’s mathematical register that indexes formal definitions. We take up the ques-
tion of how the use of actions might support children’s efforts to make sense of defi-
nitions (bottom-up processes, the left part of the oval’s perimeter in  fig. 10 ). We also 
consider the question of how children’s developing sense of definitions might, in 
turn, support the regulation of actions (top-down processes, the right part of the 
oval’s perimeter in  fig. 10 ). We elaborate these ideas below.

     Bottom-Up: Actions as Resources for Making Sense of Definitions.  How might a 
student come to make sense of any of the varied definitions introduced for integers 
( fig. 1 ) and fractions ( fig. 2 ) in whole-class discussions? While memorizing defini-

Actions

Formal definitions

0 1
?

number line problem

m
ak

in
g 

se
ns

e 
of

coordinating 
and 

specializing

counting, displacing, 
splitting

regulating

  Fig. 10.  The potential for a 
productive interplay between 
definitions and actions: ac-
tions used as a resource for 
making sense of formal def-
initions; formal definitions 
used as a resource for regulat-
ing actions as they are coordi-
nated and specialized to solve 
a number line problem. 
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tions and associated terms may be helpful for some purposes, memorization alone 
leads to what we noted that Whitehead [1959] referred to as “inert knowledge.” To 
make mathematical meaning of a definition requires going beyond its surface, trans-
forming it into systems of meanings or actions.

  A student can transform surface properties of definitions through a wide range 
of action coordinations. These action coordinations include translating a formal def-
inition into a representation on the number line. For example, a student might un-
derstand the formal definition of a  unit interval  (“the distance from 0 to 1 or any dis-
tance of 1”) as a 0-to-1 interval. In order to make sense of “any distance of 1,” a student 
might use a coordination of displacing and counting actions to identify additional 
distances of 1 on the number line. Furthermore, a child might explore generative uses 
of the  unit interval  definition, displacing the 0-to-1 segment to unmarked regions of 
the number line, and consider numerical labels for newly identified points. Finally, 
the child might also consider incongruities – for example, that two different number 
lines may have different scales, so that the length between two consecutive numbers 
on one scale would differ for another scale.

  Students’ developing understandings of newly introduced definitions can also 
have implications for their understandings of previously introduced definitions. For 
example, the introduction of  multiunit interval  (the multiple of a unit interval) may 
lead to a new regard for the affordances of the definition of a  unit interval . With re-
spect to multiunits, units are their constituent parts, and units, in turn, may be com-
posed into new multiunits with similar properties (e.g., they can be displaced to dif-
ferent positions on the line). Likewise, the definition of a subunit in the later fractions 
lessons supports new functions for a unit interval. With the definition of a subunit, 
the unit interval takes on the new function of providing boundaries for equal parti-
tions of a unit interval.

   
   Top-Down: The Register as a Resource for Regulating Actions.  In a classroom 

implementing the LMR curriculum, students are participating in a discourse com-
munity that privileges a register of mathematical definitions. These definitions offer 
students resources for regulating actions. To illustrate, consider the potential role of 
the definition of  denominator  while solving the fractions problem depicted in  fig-
ure 11 . In this problem, students are required to represent a fractional value that ex-
tends beyond the integer 1; the only correct choice from several alternatives is an im-
proper fraction. In solving such a task, many students will treat each smaller interval 
as a subunit, counting 8 as the number of subunits, and, in turn, represent the tar-
geted point with a numerator of eight but also a denominator of eight (i.e.,  8 / 8 ). Re-
cruiting the definition for  denominator  (the number of subunits in the unit) can sup-
port students in regulating how they count parts of unit intervals, leading to the iden-
tification of the target point as  8 / 7 , not  8 / 8 .

  A Longitudinal Analysis of the Classroom Community: The Interplay 

between Actions and Definitions in Collective Practices 

 We now undertake a longitudinal analysis of a single classroom community as it 
enacts LMR’s 19-lesson sequence, with a focus on the interplay between actions and 
definitions. As context, we note that the fifth-grade classroom selected for analysis 
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was located in a public elementary school in the San Francisco Bay area, and it con-
tained students from a range of socioeconomic levels and of varied ethnicities. 8  The 
teacher, whom we refer to as Mr. K, had more than 20 years of upper elementary 
teaching experience; he had some familiarity with LMR lessons prior to the year of 
data collection, having piloted selected lessons in the year prior to data collection. 
Noteworthy also is that the video and other forms of data collected in Mr. K’s class-
room were part of an efficacy study of the LMR curriculum; like other LMR class-
rooms in the study, the students in Mr. K’s classroom made strong gains relative to 
control classrooms on measures of integers and fractions knowledge [Saxe et al., 
2013a].

  To bound and organize our analysis, we selected “collective practices” as a prin-
cipal arena. Collective practices are reproduced and altered in interactional activity 
as norms, conventions, social positions, and even mathematics become constituted 
and re-constituted in interaction [Saxe, 2012]. We guided our analysis by two ques-
tions related to the interplay between actions and definitions in illustrative collective 
practices. The first was how might the teacher have introduced definitions over the 
course of lessons in ways that support sense making of the definitions through ac-
tions? The second was how might the teacher have supported sustained references to 
definitions such that definitions would be more likely to enter into students’ concep-
tualization of both number line problems and the actions they used to solve them? 
Though we frame these questions with an emphasis on the teacher, as we shall see, 
the students in the classroom became participants in both the introduction and sus-
tained use of definitions in collective practices.

  Timeline: A Bird’s-Eye View of Definition Use 

 Our video corpus included recordings of all 19 lessons. The many lessons trans-
lated into 23 hours of video recording, making data reduction a challenge. Our ap-
proach began with a selective focus on classroom talk, coding references to defini-

0 1

8
8

a)

8
7

b)

1
8c)

1
7

d)

What is the number the arrow is pointing to? Circle the answer.

  Fig. 11.  Improper fractions task: using a definition to regulate the construction of subunits. 

 8     Twenty-eight students in total (15 boys, 13 girls): 39% Caucasian, 36% African American, 11% 
Latino, 7% Asian, and 7% multiethnic.
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tions in whole-class discussions. The coding provided a basis to construct a “defi-
nitions timeline,” a bird’s-eye view of definition reference over the entire lesson 
sequence. Using the timeline as a rough guide, we were particularly interested in de-
termining the extent of references to definitions over the lesson sequence, identifying 
first occurrences of references that might signal their introductions, and identifying 
collective practices that supported the sustained use of definitions over lessons. 9 

  We represent the results of the coding in the timeline in  figure 12 . The timeline 
represents the 19 lessons sequentially from left to right, including nine integers les-
sons (the first set focusing on negative and the second on positive integers) and ten 
fractions lessons (the first set focusing on part-whole relations and the second on 
multiplicative relations). The leftmost column contains definition names that com-
prise the definition register. 10  Each hatch mark represents a single reference to the 
respective definition through the lessons in the classroom community. We included 
16 of the 17 definitions in our coding. References to the “fractions” definition were 
excluded, due to redundancy with definitions for “numerator” and “denominator.”

  Several features of the timeline informed our analytic approach. First, definition 
expressions were used frequently over the lessons in whole-class discussions, so
a qualitative analysis seemed promising. Indeed, we counted more than 1,400 in-
stances. Second, as expected, the timeline allowed us to locate the introduction of 
each definition, which became a basis to identify collective practices in which defini-
tions were introduced. Third, the timeline provided a “map” of recurring references 
to definitions, which supported our identification of collective practices that contrib-
uted to recurring use.

  Collective Practices and the Definitions Register 

 We identified two collective practices in whole-class discussions that became the 
crux of our analytic focus. As will become clear, these practices present microcosms 
constituting small but important units of classroom life. They are each marked by the 
reproduction of norms, social positions, and patterns of interaction as the use of defini-
tions and actions become realized in activities. Consistent with our analytic goals, we 
identified one collective practice that frequently occurred when terms in the definitions 
register were introduced, a collective practice that we refer to as  Defining . The second 
collective practice involved a pattern of joint activity that sustained use of the register 
after terms had been introduced, a collective practice that we refer to as  Correcting the 
Teacher . We note that, while these collective practices are consistent with design prin-
ciples that guided the construction of the LMR curriculum, Mr. K’s use of  Defining  and 
 Correcting the Teacher  practices were a part of Mr. K’s personal instructional approach.

   
   The Collective Practice of Defining Terms in the Mathematical Register: The Joint 

Production of Ostensive and Formal Definitions.  Because the LMR curriculum pro-
vided a register of 17 definitions, we were able to consider whether there were iden-

  9  For our data reduction that supported the generation of a timeline, we made use of the video cod-
ing software StudioCode. 

 10     The top-to-bottom order of the definition names reflects the order in which they are introduced 
in the lesson guide.
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tifiable collective practices in which definitions were introduced.  Figure 13  contains 
a schematic of one such practice that we refer to as  Defining , a pattern of interaction 
that was often used to introduce terms of the register. A core feature of the  Defining  
practice is the back and forth between teacher and students as participants move be-
tween what we refer to as “formal definitions” and “ostensive definitions.” Formal 
definitions are statements that  stipulate  the scope to which a definition term is meant 
to refer, establishing criteria for what should be included and excluded (see middle 
column of ( fig. 1 ,  2 ). For example, the formal definition of  unit interval  stipulates that 
“it is the distance between 0 and 1 on a number line or any other distance of 1.” Os-
tensive definitions are  demonstrations  of meanings, often generated by pointing or 
other ways of showing the meaning of a term with direct reference to its object [Witt-
genstein, 1953], like gesturing to a bracketed 0-1 distance on a number line and saying 
“that’s a unit interval.” In the context of instruction, we found that the number line 
inscriptions were often produced in teacher-student interactions with displacement, 
counting, or splitting actions, or a coordination of two or more of these actions.

   
   The Collective Practice of Correcting the Teacher: Drawing on Definitions to Sup-

port an Argument.  We noted earlier that the timeline ( fig. 12 ) revealed that often, af-
ter a definition was introduced, that same definition was referred to many times over 
in subsequent lessons, sustaining a semiotic context of definition use. This prompted 
us to ask whether there were collective practices in Mr. K’s class that led to the sus-
tained use of the mathematical terms over lessons. Further, did these collective prac-
tices provide support for the regulation of actions with definitions? We identified a 
second focal collective practice,  Correcting the Teacher , that served these functions. 
As we show, this collective practice accounts for some of the extended uses of defini-
tional terms and provides occasions for supporting definition use in conceptualizing 
and solving number line problems.

formal
definition

Formal
definitions

Ostensive
definitions

coordinations of 
actions

exemplar

coordinations of 
actions

exemplar

coordinations of 
actions

exemplar

coordinations of 
actions

Displacing,
counting, and

splitting actions

formal
definition

formal
definition

  Fig. 13.  The collective practice of  Defining : A teacher orchestrating the class in a back and forth 
between formal definitions, ostensive definitions, and logico-mathematical actions on the num-
ber line. 
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  Like the practice of  Defining , the collective practice of  Correcting the Teacher  is 
constituted by a pattern of teacher and student talk. To initiate the  Correcting the 
Teacher  practice, Mr. K feigns an error in solving a number line problem, an error 
that violates a mathematical definition or its entailment ( fig. 14 ). This teacher move 
positions the class to evaluate the teacher’s claim. Students respond by agreeing with 
or challenging the teacher’s claim, often by appealing to mathematical definitions. If 
students do not justify their claim with reference to definitions, the teacher continues 
to re-assert his (erroneous) claim until he hears a student reference a mathematical 
definition or mathematical idea in a potentially productive way. Upon hearing a sat-
isfactory response, the teacher re-voices the student’s justification, elaborating the 
relevant definition and its relevance to the problem under discussion.

  Six Episodes: From Integers to Fractions 

 To illustrate the interplay between actions and definitions over the lesson se-
quence, we draw on six collective practice episodes that occurred in Mr. K’s class-
room. In our selection of episodes, we sampled from both integers lessons (lessons 1 
through 9) and fractions lessons (lessons 10 through 19). Among the many episodes 
we found of  Defining  and  Correcting the Teacher , we further constrained our selection 
by considering only those that featured references to at least one of five definitions: 
 interval ,  unit interval ,  every number has a place ,  subunit , and  equivalent fractions . Our 
choice of these particular definitions was guided by several ideas. First, definitions 
were constitutive of the number line as a continuous mathematical object, partition-
able into metric segments  (interval, unit interval, multiunit interval, subunit, equiva-
lent fractions)  or a principle central to understanding properties of the line  (every 
number has a place) . Second, the definitions we selected showed logical interdepen-
dencies with one another, so that one could derive some definitions from the entail-
ments of others (e.g.,  unit interval ,  multiunit interval , and  subunit  are all kinds of 

Teacher makes
(intentional) error

related to definition

Student argues:
Student #1
Student #2
Student #3
Student #4
Student #5

teacher does 
not accept 
argument

teacher accepts argument

Number line problem

Teacher corrects error,
re-voicing and elaborating

student argument

  Fig. 14.  A schematic of the 
 Correcting the Teacher  collec-
tive practice. 
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 interval s). A third feature that we wanted represented in our analysis was “long life,” 
as we were particularly interested in definitions that were used across multiple lessons 
in the timeline.

   Figure 15  situates the six episodes in our timeline; each episode is labeled with 
the collective practice targeted for analysis. The associated arrows point to particular 
definition references that were foci within these analyses. Over the course of the epi-
sodes, our goal was to consider longitudinally the elaboration of the definition use in 
talk with special regard for emergent relations between definitions and actions. In 
collective practices of  Defining  (episodes #1, #2, and #6) a focal concern was how ac-
tions and previously introduced definitions provide students with resources to make 
sense of new definitions. In collective practices of  Correcting the Teacher  (episodes 
#3, #4, #5, and #6) a focal concern was to understand the supports for and use of def-
initions to regulate actions.

   
   Episode 1: Defining Interval.  Our first episode is drawn from lesson 1 of the in-

tegers series, a lesson conducted shortly after the start of the school year. In this epi-
sode, Mr. K leads a whole-class discussion of an early instance of the collective prac-
tice of  Defining  in his introduction of a definition for  interval . As noted previously, 
the  Defining  practice is marked by an interplay between the production of ostensive 
and formal definitions. Teacher and student actions produce inscriptions (e.g., inter-
vals on a number line) for what becomes pointed to as ostensive definitions, a process 
that provides support for the articulation of formal definitions (a definition of  inter-
val ). Mr. K sits in a chair in front of the whiteboard and students are gathered close 
by on the rug. To initiate the  Defining  practice, Mr. K draws a number line from 0 to 
6 on the class’s whiteboard ( fig. 16 ), and frames the ensuing episode with the state-
ment, “Let’s talk about the distance between numbers.” Mr. K brackets the distance 
between 1 and 4 on the number line (with pinched fingers), asking, “What’s the dis-
tance between 1 and 4?” (as depicted in  fig. 17 a). He then clarifies the question in a 
way that affords the coordinated use of displacing and counting  actions : “If you were 
walking from 1 to 4 (pointing iteratively to each tickmark between 1 and 4) and a step 
got you 1 of these tickmarks, how far would you walk?” ( fig. 17 b). To confirm stu-
dents’ answers of 3, Mr. K counts aloud as he gestures three hops with the tip of his 
finger from 1 to 4 on the number line ( fig. 17 c). He concludes with an ostensive def-
inition linked to the prior displacing and counting actions, “That is an  interval  [em-
phasis] of 3,” and labels the bracket with a 3 ( fig. 17 d). He then reasserts the ostensive 
definition, emphasizing the importance of the register, “1 to 4 is an  interval  of 3; that’s 
another big word that you need to know.”

  Having established an object to serve as an ostensive definition – a bracketed in-
terval of 3 ( fig. 17 d) – Mr. K segues to a formal statement, asserting, “An interval is a 
distance on the number line. Any distance is an interval.” Then, typical of his back 
and forth movement in the  Defining  practice, he shifts back to an ostensive definition: 
“This interval happens to be an interval of 3.” Next, Mr. K extends the  Defining  prac-
tice by posing new questions about values of intervals, bracketing new intervals on 
the line, and asking the class to call out their values, a process that affords the use of 
actions to generate interval values. In the course of this interaction, the class con-
structs new ostensive definitions for  interval , including intervals of 2 to 3, etc. Mr. K 
concludes with a restatement of the formal definition that builds on ostensive defini-
tions and the actions that enabled them: “So an interval is just any distance on the 
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number line … An interval is  any  distance between two numbers, we call that an in-
terval.”

   Figure 18  contains a schematic portrayal of the  Defining  episode for  interval . In 
the back and forth between the production of ostensive and formal definitions for 
 interval , Mr. K affords his students multiple opportunities to use counting and dis-
placing actions to make sense of his own (and one another’s) displays of both the 

  Fig. 16.  Mr. K and his class, with the 0 to 6 labeled line on the whiteboard. 
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a What’s the distance between 1 and 4?

d The joint construction of an ostensive
definition rooted in counting and
displacing actions: “That is an interval
of 3,” as a label for the bracket is added.

c Mr. K’s counting and displacing
actions in hops from 1 to 4.
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  Fig. 17.  The construction of an ostensive definition through coordination of counting and dis-
placing actions with specialization to linear distance. 
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formal definition and the ostensive definitions. In his displays such as, “If you were 
walking from 1 to 4 and a step got you 1 of these tickmarks, how far would you walk?” 
(counting aloud as he gestures three hops from 1 to 4 on the number line), Mr. K roots 
the numerical value of an interval in coordinated displacing and counting actions. 
The reference to displacing actions is contained in Mr. K’s reference to the student 
walking, and the reference to counting actions is contained in the query about how 
many steps, with the accumulation (count) of steps producing a cardinal number. 
Many students seem to be taking advantage of these opportunities for counting and 
displacing actions, reporting correct values to Mr. K when he asks them to specify 
interval values on the line. Their engagement provides resources for reflection on the 
meaning of Mr. K’s formal definition: “An interval is a distance on the number line. 
Any distance is an interval.” They would be likewise prepared to reflect on the formal 
definition that would later be inscribed on the classroom poster: “The distance be-
tween any two numbers on the number line.”

  While the teacher’s use of actions on the number line may support students’ re-
flections, it is not clear how children are actually making sense of the definition in 
relation to these actions. We take the displays that Mr. K was producing and orches-
trating as amenable to multiple interpretations, and we note that diverse conceptual-
izations may be consistent with correct answers to Mr. K’s queries. For example, some 
students may be conceptualizing the line as consisting of discontinuous quantities of 
countable tickmarks, where  interval  refers to a collection of tickmarks. Others may 
be treating the definition in a manner consistent with Mr. K’s intentions: as referenc-
ing a metric space, one in which length is central to the definition.

   
   Episode 2: Defining Unit Interval.  In lesson 2 (integers), we find another instance 

of the  Defining  practice in which the focus was on a new register term,  unit interval . 
In this instance, Mr. K grounds the introduction of  unit interval  in the prior defini-
tion of  interval . Mr. K asserts, “there’s a special kind of interval … it’s the most im-
portant that we’ve gotta learn on the number line; it’ll help us unlock the secrets of all 
number lines.” He then draws attention to the 0-to-1 distance by placing a Cuise-
naire TM  rod 11  that fits between 0 and 1 on top of the line ( fig. 19 a), asking, “How much 
is that interval?”, whereupon the class responds in chorus, “one.” In rapid sequence, 
he then creates an ostensive definition that leads to his articulation of a formal defini-
tion. Mr. K says, “There’s a special name for that kind of interval …” He writes “Unit 
Interval” on the whiteboard and states, “It means a distance of one.” Mr. K then gen-
erates a new ostensive definition. Referring to the 0-to-1 distance, he says, “So that’s 
a unit interval,” and then  displaces  the Cuisenaire rod to the 4-to-5 interval on the 
line, saying “Here’s another one” ( fig. 19 b).

  Mr. K then challenges the class to explain why both are unit intervals, and stu-
dents respond that they are both distances of 1. Mr. K reiterates and illustrates their 
statements, capturing the 4-to-5 interval with a finger pinch and displacing it back to 
the 0-to-1 position. He asks the students to “turn and tell a partner” 12  about ad-

  11  Cuisenaire rods are of ten lengths coded by color with each rod being a multiple of the shortest 
length rod (white). One red is equal in length to that of two whites; one light green is equal in length to 
that of 3 whites; one purple is equal in length to that of 4 whites, etc. 

 12     Mr. K frequently elicits partner talk as a participation format. This has a number of affordances. 
For example, it allows a large number of students to voice their ideas and to obtain feedback from their 
peers, while allowing Mr. K to accomplish some selective monitoring.
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ditional instances of unit intervals on the line. After productive peer-to-peer chat-
ter, Mr. K asks the class to think of additional unit intervals not on the whiteboard 
line – unit intervals “that you could imagine” – and asks students to share their an-
swers with the whole class. A brief transcript is included below.

Teacher:          That’s also a unit interval. Why?
Students (in chorus):         It’s a distance of one.
Teacher:           (nods) It’s a distance of one. It’s the same distance as the dis-

tance between zero and one (displaces Cuisenaire rod back to 
the 0-to-1 interval on the line), they’re identical (displaces rod 
back to the 4-to-5 interval on the line). That’s also a unit in-
terval (displaces rod to the 3-to-4 interval on the line). Turn 
and tell a partner another one you see on here.

Student (audible chatter):         Five and six.
Student (audible chatter):       Two and three.
Teacher:           More unit intervals please. Okay, now turn and tell somebody 

on the other side one (unit interval) that’s not on this number 
line, that you could imagine.

Student (audible chatter):       Sixteen and seventeen.
Student (audible chatter):       One hundred and one hundred and one.
Student (audible chatter):       One million and one million and one.

    Mr. K then walks to the poster of definitions and proceeds to call on each student 
individually (in the entire class) for an example of a unit interval that is not on the 
line. 

 The  Defining  practice ends with the introduction of the new term inscribed on 
the classroom poster ( fig. 20 a), accompanied by its formal definition: “Any distance 
from 0 to 1 or an equivalent distance” ( fig. 20 b). In the rightmost column, Mr. K in-
scribes an image that serves as a basis for ostensive definitions ( fig. 20 c). He empha-
sizes that the lengths of unit interval on the line are “consistent” – a term he adds to 
the poster ( fig. 20 d).

  Over the course of this episode, we note that there is both continuity and discon-
tinuity with the prior  Defining  practice. The prior formal definition of  interval  (and 
related ostensive definitions) provides a resource to interpret the new definition of 
 unit interval ; furthermore, the actions of displacing with the Cuisenaire rod, as well 
as the objectified unit interval of a finger pinch, afford students the opportunity to 
construct and explore entailments of the formal definition. Indeed, Mr. K’s coordi-
nated displacements of a rigid rod and counts of 1 may afford some students’ insight 
into the invariant (i.e., “consistent”) length of unit intervals on a given number line. 

6543210 6543210

a “There’s a special name for that kind
of interval ...”

b “Here’s another one ...”

  Fig. 19.  Ostensive definitions of unit interval with displacing action. 
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Yet, as Mr. K implies in his opening statement, we also find discontinuity in the in-
troduction of the new term;  unit interval  is a new definition, one that has the potential 
to “unlock the secrets of all number lines.” We also note that some students may still 
not conceptualize unit intervals in a continuous metric space, an issue directly ad-
dressed in the next episode in which the class becomes engaged with a  Correcting the 
Teacher  practice.

   
   Episode 3: Correcting the Teacher – Unit Intervals.  In lesson 2 of integers, an oc-

currence of  Correcting the Teacher  brings to the fore the importance of conceptual-
izing distances on the number line as metric units of length (rather than as discon-
tinuous tickmarks). This metric treatment of the number line calls for a further spe-
cialization of actions in which intervals are treated as linear metric units constituting 
a continuous linear dimension. The practice emerges after the completion of an activ-
ity in which students are instructed to build race courses that are four miles long with 
the red rod representing a distance of one mile. Mr. K organizes a reflective discussion 
about the activity through a  Correcting the Teacher  practice: He builds the 4-mile 
racecourse on the whiteboard with four Cuisenaire rods of different lengths and as-
serts that his racecourse is correct ( fig. 21 ). As typical of the  Correcting the Teacher  
practice, the class objects, and the discussion coalesces around the need to specialize 
and coordinate actions so as to respect an invariant linear unit.

  The back and forth of teacher-student exchanges is extended in this instance of 
the  Correcting the Teacher  practice. We focus on key moments that illustrate the way 
the practice supports references to definitions as well as their use in regulating ac-
tions. After constructing the racecourse shown in  figure 21 , Mr. K asks the class, 
“What do you think?” and several students immediately reject Mr. K’s display. In a 

Introduced definition
register term

Ostensive
definition

Formal
definition

“Consistent”
a c

b
d

  Fig. 20.  Definitions register 
showing new term added 
(unit interval), formal defini-
tion for unit interval, empha-
sis on consistent distance, and 
ostensive definitions that sup-
port the formal definition. 
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display typical of  Correcting the Teacher , Mr. K feigns surprise – “Why not!?” – and 
argues for the correctness of his race course. He continues voicing his argument over 
students’ repeated objections, appealing to several definitions that had been previ-
ously introduced, asking and answering several rhetorical questions: “Aren’t my 
numbers increasing in value? Yes!’’ ( Order  principle introduced in lesson 1.) ‘‘Is zero 
on my number line? Yes!’’ ( Zero is a number  principle, introduced in lesson 1.) ‘‘Do 
I have intervals up here? Yes!’’ ( Interval  definition, introduced in lesson 1.) ‘‘Then 
what’s wrong?!” He then instructs students to “turn and tell” a partner what is wrong 
with his racecourse.

  After some partner talk, Mr. K states that he hears many students saying that the 
racecourse is wrong because the intervals are of different lengths, and he encourages 
them to articulate why this is a problem. Then, after some continued peer talk, Mr. K 
says he overheard the answer he was looking for. He calls on one student to share his 
reasoning, who says, “Because some of them are more than a mile.” Mr. K affirms the 
student’s answer and draws the class’s attention to the problem’s instructions:

  I told you the red rod is 1 mile. You can’t all of a sudden make the yellow one mile. … If I 
said on this number line the red is 1 mile, then the red is always one-mile. And here’s the 
word for that. It has to be (writes the word “consistent” on the board, which students read 
aloud in chorus). On any one number line, once you choose what it’s going to be, you got 
to keep it consistent. … Now I could make a whole new number line where the yellow is
1 mile, right? And then all the yellows would be one-mile (makes a displacing motion of the 
yellow rod several times). …  Consistency , remember that word, it’s going to come up a lot.

  In this instance of the  Correcting the Teacher  practice, we find that the definition 
of  unit interval  is referenced as a basis for regulating displacing and counting actions 
used in the construction of a number line with Cuisenaire rods. Though he does not 
specifically refer to the term “unit interval,” he references a term that he uses as a sub-
stitution for it: “consistent.”  Consistent  is a term that Mr. K inscribed on the class-
room poster under  unit interval  and a term that he has come to use as a substitute for 
the reference to the definition (as have many students in the class). This episode also 
prefigures an idea that will be taken up in subsequent lessons – the idea that multiunit 
intervals can be constituted by the composition of multiple unit intervals, a composi-
tion rooted in successive displacing actions (and their decomposition afforded by 
splitting actions).

   

0

red redyellow green

1 2 3 4

What do you think? ... “Aren’t my numbers increasing in value? Yes!”
(Order principle.) “Is zero on my number line? Yes!” (Zero is a number 
principle.) “Do I have interval up here? Yes!” (Interval definition.) 
“Then what’s wrong?!”   Fig. 21.  Mr. K’s 4-mile race-

course, which he insists is 
“correct.” 
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   Episode 4: Correcting the Teacher – Multiunit-Unit Relations.  During the fourth 
integers lesson, Mr. K again leads the class through a  Correcting the Teacher  practice 
that engages the idea of relations between unit intervals and multiunit intervals. The 
error he feigns prompts the students to draw on definitions introduced in prior les-
sons to formulate their arguments and to make connections across definitions.

  A central mathematical idea that emerges in lesson 4 is that unit intervals can be 
composed to produce a multiunit interval, which can in turn be decomposed into unit 
intervals. Supporting the multiunit-unit relations idea are two terms of the number 
line register introduced in the prior lesson:  multiunit interval  (“a multiple of a unit 
interval”) and  every number has a place  (“every number has a place, but not every 
number needs to be shown”). To draw students into investigation of the new register 
term,  multiunit interval  and  every number has a place , Mr. K engages the class with 
the problem of locating 8 miles on a race course with only 0, 3, 9, and 12 miles marked 
( fig. 22 ). Referencing the racecourse on the overhead screen, Mr. K asserts (incor-
rectly) to the class that 8 miles cannot be located on the line: “Eight miles!? Oh, that’s 
not on there.” A few students protest, but Mr. K continues, drawing a particular stu-
dent’s attention to the apparent contradiction between the problem’s goal (to locate 
8) and the appearance of the line: “There’s no eight miles, Luis; I can’t do it.” Not 
hearing anything from the students, Mr. K continues: “Zero, three, six, nine, and 
twelve; there’s no eight.”

  In response to Mr. K’s mock insistence that 8 cannot be located, one student calls 
out loudly with “every number has a place!” and another calls out “you could use 
whites,” referring to the small white Cuisenaire rods. Taking up the first student’s call 
out, Mr. K repeats and ratifies the student’s mention of a relevant definition, noting 
the complete principle “every number has a place, but not every number needs to be 
shown.” Then Mr. K picks up on the idea of using white Cuisenaire rods to locate 8. 
After the class works through the observation that three whites fit within the green 
rod and the interval from 6 to 9 miles is 3 miles, they agree that one white is equiva-
lent to one mile and, reciprocally, that a green can be split into three whites ( fig. 23 ). 
Summarizing the student’s idea, Mr. K says, “Here’s what he did. He found the mul-
tiunit and the unit. He’s got the multiunit and the unit. Now he can find  any  number 
on that line.”

  The episode concludes with the class collaboratively generating three strategies 
for locating 8, each of which involves a coordination between the action of splitting, 
displacing, and counting. The first strategy is to count two displacements of the 
white rod with a starting point at 6 and then the end point at 8 ( fig. 24 a). The second 
strategy, suggested by a student, uses a red rod to locate eight since the red rod equals 

0 3 6 9 12 miles 

“Eight miles!? Oh, that’s not on there. There’s no eight
miles, I can’t do it.” [Locate 8 miles on the number line.]

  Fig. 22.  The number line race that the class is considering on which 8 is not labeled. 
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two white rods ( fig. 24 b). Another student offers a third strategy suggesting a single 
counted displacement of a white rod moving in the other direction, from 9 to 8 
( fig. 24 c).

  In sum, the  Correcting the Teacher  practice described in this episode creates op-
portunities for the class to make further sense of and extend the use of number line 
definitions, with prior definitions supporting the coordinated use of counting, split-
ting, and displacing actions.  Figure 25  (adapted from  fig. 10 ) displays the (simplified) 
dynamics of an interplay between definitions and actions supported by the teacher. 
In earlier lessons, actions of splitting, displacing, and counting previously afforded an 
interpretation of the definition and principle of  multiunit interval  and  every number 
has a place . In turn, now the definition of  multiunit interval  and the principle of  every 
number has a place  have implications for the conceptualization of the problem; they 
give warrant to the assertion that 8 exists on the number line, contrary to the teacher’s 
claim. They also provide an avenue to conceptualize an approach to locating 8 through 
a coordination and specialization of splitting, displacing, and counting actions. It is 
noteworthy that the use of splitting actions, constrained by the idea of a multiunit, 
foreshadows what will appear as students make an eventual transition to fractions in 
lesson 10, when unit intervals will be split into segments of equal length.

   

w
w

w

green  Fig. 23.  The length of a green Cuisenaire rod can be split into 
the length of three white rods, and reciprocally, the length of 
each of three white rods can be aligned end to end to form the 
length of a single green rod. 

0 miles 

w

83 6 9 12

0 miles 83 6 9 12

0 miles 

w

83 6 9 12

a

b

c

red

Color version available online

  Fig. 24.  Displacing and counting displacements of the white Cuisenaire rods and a red rod to lo-
cate 8. 
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   Episode 5: Correcting the Teacher – Unit-Subunit Relations.  In lesson 10, the first 
lesson on fractions, Mr. K orchestrates a  Correcting the Teacher  practice that supports 
a transition from integers to fractions. The practice serves to carry forward the famil-
iar definition of  unit interval , but now used to serve a new function, one in which  unit 
interval  is constitutive of the definition of a  fraction . For example, the  unit interval  
now serves as a means to bound a distance on a number line, a distance that can be 
split into congruent parts in order to identify a denominator and numerator. This 
shift in function will have implications for new specializations and coordinations of 
actions that are elaborated in later lessons.

  In the episode, the class is discussing a multiple-choice problem in which they 
must translate an area model representation of a fractional quantity (a square split 
into quarters with one grayed) into a number line representation. The sequence of 
 Correcting the Teacher  occurs as students are gathered around Mr. K at the overhead 
projector. The discussion has turned to option (a), which features an arrow pointing 
to an unlabeled tickmark as shown in  figure 26  (the point for  1 / 2 ).

  After establishing with the class that the shaded area of the rectangle split into 
four equal parts is  1 / 4  of the whole rectangle, Mr. K first asks, ‘‘what’s wrong with (a)?” 
Several students accurately reply in chorus that the arrow shows one half, not one 
fourth. Mr. K initiates  Correcting the Teacher  by advocating for option (a) as the cor-
rect answer. He justifies his position by pinching the interval between 0 and  1 / 2  be-
tween his index finger and thumb and displaces it four times to reach 2, imploring, 
“but look, it’s 1, 2, 3, 4” ( fig. 27 ). He points out that the arrow is at the first of the four 
intervals. Over students’ objections, he repeats the displacement while counting more 
slowly; “there’s four equal parts, and this is just one of them.” The students continue 
to insist that option (a) shows  1 / 2 . Apparently unsatisfied with the students’ rebuttal, 
Mr. K demonstrates his justification yet again – this time even more emphatically – 

Multiunit interval definition
Every number has a place principle
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Where is 8?

displacing, splitting, counting

0 3 6 9 12
splitting

displacing

counting

“seven” “nine”“eight”

  Fig. 25.  An interplay between 
actions and definitions in lo-
cating 8 on a number line
that is labeled in multiples
of three. 
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repeating his counted translations that indicate that the arrow points to one fourth. 
Finally, Mr. K relents after hearing Lila’s statement in which she asserts, “Because that 
is one piece and it has to be between one.” Mr. K re-voices Lila’s statement, incorpo-
rating the definition of  unit interval : “Lila says it’s gotta be inside a unit interval.” He 
draws a bracket on the interval between 0 and 1 on the line. “That’s where we gotta 
look; we gotta forget about that part (the interval between 1 and 2).” To conclude, Mr. 
K reasserts the importance of identifying the unit interval in representing fractions 
and then, with that logic, recognizes that the arrow in option (a) does indeed point to 
the position for  1 / 2 .

  Noteworthy in this episode of  Correcting the Teacher  is a novel relation between 
definitions and actions. In particular, the idea of a splitting action is applied to the 
unit interval. These actions support students’ sense-making of the  subunit  defini-
tion, formally introduced later in the lesson. In turn, the definition of  subunit  will 
come to act as a basis for regulating action coordinations that then become a re-
source for emerging definitions such as  denominator  (the number of subunits that 
constitute a unit), and  numerator  (the number of subunits from zero). Additionally, 
these actions are specialized to the number line in that they treat the unit interval as 
a constitutive part of a linear metric space. Thus, we again find a bootstrapping of 
actions and definitions, with actions used to make meaning of newly introduced 
definitions, and definitions, in turn, used as resources to regulate coordinations of 

0 1 2

  Fig. 26.  Opening discussion 
of option (a), an incorrect 
translation of  1 / 4  of a square 
to the indicated fractional 
point on a number line. 

0 1 2

thumb 
pinch

“But look, it’s one, two, three, four!”

  Fig. 27.  Mr. K’s demonstra-
tion that option (a) is correct 
in the  Correcting the Teacher  
practice as he ignores the unit 
interval on the number line; 
he measures and displaces, 
and counts the interval dis-
tance asserting that the tar-
geted point is  1 / 4 , not  1 / 2 . 
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actions. In the next episode, which takes place during a later fractions lesson, we find 
additional ideas seeded by the interplay between action coordinations and defini-
tions.

   
   Episode 6: Investigating Equivalent Fractions through Defining and Correcting the 

Teacher Practices.  Lesson 15 engaged the class with a definition for  equivalent frac-
tions , the idea that a single point on a number line can be expressed with a limitless 
number of expressions (e.g.,  1 / 2 ,  2 / 4 ,  4 / 8 , …). In the episode that we identified, we 
found two instances of the  Correcting the Teacher  practice that are embedded within 
an extended  Defining  practice. The episode brings forward definitions elaborated in 
prior fractions lessons, including the  length of subunit  principle,  denominator , and 
 numerator . Over the course of the episode (and in each collective practice), we find 
that students’ coordinated actions of splitting, displacing, and counting afford them 
the opportunity to develop a grounded conceptualization of equivalent fractions, a 
challenging mathematical idea.

  For some students,  equivalent fractions  could present a contradiction with their 
prior knowledge. Indeed, canonical number lines have one and only one label as-
signed to tickmarks, and the  every number has a place  principle could be interpreted 
as indicating that every position on the number line is associated with only one ex-
pression. That stated, by lesson 15 students had significant conceptual resources to 
address the potential problem. Indeed, in lessons 12 and 13, students had explored 
improper fractions (e.g.,  5 / 4 ) and mixed numbers (e.g., 1 1 / 4 ), creating different repre-
sentations for the same points on a number line through different coordinations of 
actions specialized for the number line; further, in lesson 14, they had explored the 
idea that whole numbers could also be represented as fractions on the number line 
(e.g., 1 could be represented as  2 / 2 ).

  Three previously introduced terms provide students resources for conceptual-
izing equivalent fractions in lesson 15: the definitions of  numerator  and  denominator , 
and the  length of subunit  principle ( fig. 28 ). The  length of subunit  principle encapsu-
lates the idea that, as the length of the subunit constituting a unit decreases, the num-
ber of subunits constituting the unit increases, leading to an invariant multiplicative 
relation for equivalent fractions. Though these ideas would seed the definition of 
 equivalent fractions , students had yet to generate explicit knowledge that any point 
could be expressed with a limitless number of equivalent fractions. Neither had they 
developed well-grounded knowledge about the logic of equivalent expressions im-
plied by the  length of subunit  principle and the definitions of  denominator  and  nu-
merator .

  The lesson on equivalent fractions begins with students working independently 
on a number line problem. The problem requires students to write three fraction 
names for the same point ( fig. 29 ). During the subsequent whole-class discussion of 
the problem, both the  Defining  practice and the  Correcting the Teacher  practice oc-
curred while Mr. K worked with the class at the overhead projector with the problem 
projected on the overhead screen.

  To generate three fraction names, the class first identified that the number line 
was not partitioned into equal intervals ( fig. 29 ); Mr. K, at the overhead, split the in-
terval between the midpoint and the point labeled “1” into two, creating four subunits 
using a coordination of splitting, displacing and counting actions. In this process, the 
denominator was then identified through a count of four subunits and the numerator 
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was identified through a count of one; the resulting representation is  1 / 4  (see  fig. 30 a). 
Subsequent coordinations of splitting, displacing and counting actions were used in 
the production of the representations of  2 / 8  and  4 / 16  ( fig. 30 b and c, respectively). 
However, prior to the generation of  4 / 16 , Mr. K initiated the  Correcting the Teacher  
practice, claiming that there were no more fractions possible. Students object and the 
class produces the label of  4 / 16 . The resulting three labels –  1 / 4 ,  2 / 8 , and  4 / 16  – become 
the target of an ostensive definition. Mr. K states, “All of those [fractions] are the 
same; they are all equal. Who knows what we call them?” at which point the class re-
sponds in chorus, “equivalent fractions!”, having become familiar with the formal 
expression in a previous lesson (and perhaps in a prior classroom).

Denominator
The number of 
subunits in a unit. 0 1 2

Unit

denominator = 4

0 1 2

numerator = 3

Numerator
The number of 
subunits.

0 1

0 1

0 1

0 1

number of 
subunits

2

3

4

5

Length of 
the subunit

The more subunits in 
a unit the shorter the 
subunits are.

  Fig. 28.  Principle and definitions posted in lesson 11:  length of subunit  principle, and definitions 
for  denominator  and  numerator . 

0 1

0 1

0 1

Write three fractions that belong in the box
below. Make sure that each box has a 
different fraction!

  Fig. 29.  An opening problem 
used in the lesson on equiva-
lent fractions. 
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  After the production of an ostensive definition of  equivalent fractions  on the 
number line, Mr. K shifts the class’s focus to Cuisenaire rods ( fig. 31 ). He guides the 
class again through the production of Cuisenaire rod displays that would become the 
target for additional ostensive definitions, with the production of  1 / 2  of a rod’s length, 
 2 / 4  of a rod’s length, and  4 / 8  of a rod’s length. We again find support for the coordina-
tion of splitting, displacing, and counting actions (now carried out with rods): Mr. K 
stipulates a unit length using the brown rod, and then “splits” the brown first into two 
subunits using purples to create a  1 / 2  split, then into four subunits using reds to iden-

i. Splitting actions that create
   new subunits.

a

b

c

0 12
8

i. splitting actions to create new subunits

0 1

0 11
4

i. split

iii. numerator

ii. denominator

iii. numerator

ii. denominator

iii. numerator

ii. denominator

i. splits i. splits i. splits i. splits

4
16

   ii.  the denominator – the number of 
       subunits constituting the unit

Displacing and counting actions to determine:

   iii. the numerator – the number of  
        subunits from zero to the target

Kinds of actions and their functions

  Fig. 30.  The opening discussion: the production of three fraction labels for a point on the number 
line through coordinations of splitting, displacing, and counting actions. 
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tify the same point as  2 / 4 , and finally eight subunits using whites to identify the same 
point as  4 / 8 . For each set of splits, displacements, and counts, Mr. K writes the associ-
ated fraction expression on the whiteboard. Again, the representations become os-
tensive definitions of  equivalent fractions :  1 / 2 ,  2 / 4 , and  4 / 8 .

  In the culmination of the  Defining  practice, another instance of  Correcting the 
Teacher  emerges. Mr. K argues that  2 / 4  (written on the whiteboard) cannot be equal 
to  1 / 2  because 2 (the numerator in  2 / 4 ) is bigger than 1 (the numerator in  1 / 2 ). In 
objecting, a student presents a version of the  length of subunit  principle – as the 
subunits increase in length, the denominator gets smaller. As the  Defining  practice 
closes, Mr. K states and inscribes the formal definition on the poster: “Fractions 
that are the same place but with different subunits.” This formal definition inte-
grates the splitting, displacing, and counting actions by means of which the class 
identified the same point with different fraction names. The definition sets the 
stage for subsequent lessons when students reason about multiplicative relations 
between numerators and denominators, ordering and comparing fractions on the 
line.

red

purple

white

brown

red

white

a

b

c

purple

purple

brown

purple

red red

redred

purple

brown

purple

red red

white white white white white white

2
1

4
2

8
4  Fig. 31.  The construction of 

three displays of Cuisenaire 
rods to show the construction 
of expressions of  1 / 2  ( a ),  2 / 4  
( b ), and  4 / 8  ( c ). 

Co
lo

r v
er

si
on

 a
va

ila
bl

e 
on

lin
e

D
ow

nl
oa

de
d 

by
: 

U
ni

v.
of

 C
al

ifo
rn

ia
 B

er
ke

le
y 

   
   

   
   

   
   

   
   

   
16

9.
22

9.
32

.3
6 

- 
4/

19
/2

01
5 

7:
55

:2
0 

P
M



Human Development 2015;58:5–44
DOI: 10.1159/000371560

40  Saxe/de Kirby/Kang/Le/Schneider

 

  Discussion: A Longitudinal Perspective on the Dynamics of Development –
The Interplay between Definitions and Actions in the Collective Life of the 
Classroom Community 

 When instruction in mathematics is successful, networks of historically elabo-
rated ideas become generative for children, deeply integrated with their own develop-
ing thinking and problem solving. To understand how this process may be supported 
in classrooms over time, we drew upon the seminal contributions of Vygotsky and 
Piaget. Vygotsky’s focus on the interplay between “scientific” and “everyday” con-
cepts provided an entry into our treatment of relations between discipline-linked 
ideas that develop from the “top down” (Vygotsky’s “scientific concepts”) and ideas 
that develop from the “bottom up” (Vygotsky’s “everyday concepts”). We made use 
of Vygotsky’s argument that strong instruction entails a productive interplay between 
the development of children’s everyday and scientific concepts. We also made use of 
Piaget’s treatment of actions that afford the construction of logico-mathematical rela-
tions. For us, Piaget’s treatment of actions, and the potential for their specialization 
and progressive coordination into logico-mathematical groups, served as a function-
al equivalent of Vygotsky’s developing everyday concepts. They also provide a means 
of turning the number line into an artifact with logico-mathematical properties.

  To support our longitudinal analysis of the interplay between processes of devel-
opment and instruction, we selected the LMR curriculum unit. The choice served our 
purposes well, putting into clear relief core processes of interest. First, the curriculum 
provided a useful arena for longitudinal analysis. As we noted previously, in an ex-
perimental study contrasting LMR classrooms with controls, LMR classrooms 
achieved strong learning gains [Saxe et al., 2013a] that were reflected in Mr. K’s class-
room. Second, the curriculum supported an analysis of top-down developments since 
it privileged the introduction of discipline-linked mathematical definitions through-
out the lessons that cover mathematical content often considered “hard to learn” and 
“hard to teach.” Third, the curriculum also supported an analysis of bottom-up de-
velopments, since students were afforded the use of sensorimotor actions of displac-
ing, counting, and splitting over their recurring engagement with number line prob-
lems.

  Our inquiry resulted in a longitudinal case study of a single classroom commu-
nity. Drawing on Saxe [2012], our analytic approach was to treat the classroom as a 
microculture with evolving interactional routines or “collective practices.” We iden-
tified two collective practices that the teacher orchestrated in this classroom commu-
nity:  Defining  and  Correcting the Teacher , each of which became an arena for analysis. 
Our focus was on how the teacher orchestrated each of the practices to support a 
productive interplay between actions and the classroom community’s stipulated def-
initions.

  We found evidence of a productive interplay between actions and definitions in 
the case study classroom. Early in the lessons, actions of displacing, counting, and 
splitting provided an initial foothold for children to conceptualize and solve number 
line problems in generative ways. As definitions were stipulated, students’ sense-
making of definitions in terms of actions could support new action specializations 
and coordinations. This could in turn support a shift from the meaning making of 
stipulated mathematical definitions as objects to be understood into representational 
forms that could be drawn upon to regulate actions in potentially productive ways.
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  We also found that, across remarkably diverse mathematical topics, the teacher’s 
orchestration of collective practices contributed to an evolving semiotic context of 
definition-action relations that supported coherence and connections across lessons. 
For example, in  Defining , the teacher sometimes introduced new definitions as entail-
ments of prior definitions, entailments grounded in actions. In  Correcting the Teach-
er , the teacher contributed sustained use of familiar definitions in the context of new 
number line problems.

  Concluding Remark 

 We close by noting that our treatment engaged fundamental ideas related to cog-
nitive development and instruction but that we elaborated these ideas in the context 
of a particular curriculum and a single classroom community. Nonetheless, we argue 
that this treatment can illuminate in productive ways the interplay between top-down 
and bottom-up cognitive developments in collective practices in other classrooms 
and in other subject matter domains. Regardless of the domain, teachers engage chil-
dren with the equivalent of historically elaborated scientific concepts and procedures; 
at the same time, children come to the classroom with cognitive resources that they 
may be able to draw upon to make sense of these systems of concepts. The interplay 
between these top-down and bottom-up developmental processes takes form in mi-
crocultural worlds of classrooms that may support (to whatever degree) a productive 
interplay. Understanding these fundamental processes can shed light on longstand-
ing questions about culture-cognition relations [Saxe, 2012], but at the level of mi-
crocultural worlds of classroom communities. It may also illuminate contemporary 
issues in education like the formation of learning trajectories [Clements & Sarama, 
2009; Daro, Mosher, & Corcoran, 2011; Penuel, Confrey, Maloney, & Rupp, 2013; 
Simon, 1995] and participation in discipline-linked practices [Engle & Conant, 2002; 
Ford & Forman, 2006].
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